В.С. Петрушин, А.М. Якимец, А.В. Груша

ВЫБОР АСИНХРОННЫХ ДВИГАТЕЛЕЙ ДЛЯ РАЗЛИЧНЫХ РЕЖИМОВ РАБОТЫ

Пропопується прямий вибір АД для різних режимів роботи, який дозволяє врахувати як температурні обмеження, так і масо-габаритно-вартісні і енергетичні критерії, а також низку функціональних обмежень.

Предлагается прямой выбор АД для различных режимов работы, позволяющий учесть как температурные ограничения, так и массо-габаритно-стоимоспые и энергетические критерии, а также ряд функциональных ограничений.

ВВЕДЕНИЕ

Основной задачей при выборе асинхронных двигателей (АД) для разнообразных электроприводов является максимальное приближение эксплуатационных характеристик этих электромеханических преобразователей к задаваемым требованиям потребителей при обеспечении надежной и экономичной работы в течение определенного ресурса времени. На валу двигателя может быть нагрузка различная по характеру (постоянство момента нагрузки, постоянство мощности нагрузки, степенная зависимость момента от частоты вращения), по величине, по режиму работы (продолжительный, кратковременный, повторнократковременный, перемежающийся и т.д.). В частности от режима работы, т.е. от соотношения длительности периодов работы и пауз между ними или периодов работы с полной или частичной нагрузкой, от частоты включения машины и характера протекания переходных процессов, зависит нагрев электрической машины. Наряду со стандартными режимами работы [1], возможны и нестандартные [2, 3]. Стандартные характеризуются различными временными показателями (ПВ - продолжительностью включения, ПН продолжительностью нагрузки, продолжительностью работы, частотой включения и т.д.).

Правильный выбор двигателя должен обеспечить высокие энергетические показатели в процессе эксплуатации, свидетельствующие о его рациональном использовании. Как правило, нагрузка на валу двигателя изменяется во времени (может быть описано с помощью нагрузочных диаграмм или циклограмм), вследствие чего изменяются потери в нем и, соответственно, температуры частей двигателя. Т.е., для выбора двигателя целесообразно проведение полного теплового расчета, в результате которого определяются температуры наиболее напряженных в тепловом отношении обмотки статора и подшипников, с учетом зависимости нагрузки от времени, а также с учетом переходных процессов (пуска, реверса, торможения, перехода от одной нагрузки к другой и т.д.).

ПОСТАНОВКА ЗАДАЧИ

На сегодняшний день методика выбора АД для стандартных режимов работы [4,5,6,7] базируется на косвенной оценке температурного режима. Для этого используются методы эквивалентного тока, эквивалентного момента, эквивалентной мощности. Вместе с тем при прямом выборе возможен расчет значений температур конструктивных элементов АД, и при условии не превышения ими температурных ограничений, осуществление выбора, когда в качестве критериев могут использоваться масса, габариты, стоимость двигателя, среднециклические приведенные затраты на изготовление и эксплуатацию $\Pi 3_{\text{сц}}$, сред-

нециклические энергетические показатели (КПД и коэффициент мощности), либо может быть применен обобщенный критерий, учитывающий в качестве составляющих вышеперечисленные критерии. Результаты выбора изменяются при различных используемых критериях или при различных их составляющих в обобщенном критерии, а также зависят от задаваемых коэффициентов значимости этих составляющих. При расчете критериев могут приниматься во внимание их значения в переходных режимах работы. Такой подход позволяет осуществлять выбор как для режимов работы, в которых продолжительности переходных режимов значительно меньше продолжительностей работы в установившихся режимах, так и для режимов при соизмеримости вышеуказанных продолжительностей. При выборе определяется, удовлетворяет ли выбранный вариант ограничениям, определяемых требованиями стандартов и технических заданий, к числу которых относятся тепловые (температуры обмотки статора и подшипниковых щитов), механические (прогиб вала, критическая скорость вращения, прочность вала, динамическая грузоподъемность подшипников), виброакустические (уровни виброскорости от небаланса подшипников в осевом и радиальном направлениях, уровни магнитной виброскорости, виброускорения и шума, уровень вентиляционного шума), пусковые (кратности пусковых тока и момента), динамические (максимальные броски тока и момента при переходном процессе, время переходного процесса) показатели, показатели механических характеристик (относительная жесткость характеристики, перегрузочная способность). Если в качестве критерия выбора использовать такой энергетический показатель, как КПД, будет обеспечиваться энергосберегающая эксплуатация двигателя.

В связи с вышесказанным для реализации автоматизированного выбора АД для различных режимов работы с учетом вышеперечисленных критериев и ограничений требуются комплексные математические модели (ММ), включающие в себя модели АД (для установившегося режима основанной на Т-образной схеме замещения, для динамического режима - на системе дифференциальных уравнений обобщенной машины, для анализа теплового состояния ММ, описанные в [8, 9, 10, 11, 12, 13]) и модели нагрузочных диаграмм M(t) - циклограмм и позволяющих выполнить анализ электромагнитных, электромеханических, энергетических, тепловых, механических, виброакустических процессов при работе АД на различные по характеру, величине и режиму нагрузки. Модели двигателя предполагают рассмотрение машин различных конструктивных исполнений, степеней защиты, систем вентиляции, типов роторов и т.д. и учитывают изменение параметров схем замещения двигателя вследствие насыщения стали магнитопровода и вытеснения токов в обмотках двигателя, наличие основных и добавочных потерь в стали в статических и динамических режимах работы двигателя, наличие высших пространственных гармоник магнитного поля.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

На кафедре электрических машин Одесского национального политехнического университета был разработана программа DIM*Drive*, предназначенная для автоматизированного выбора АД для различных режимов работы. Программа основана на системных принципах, аналогично программе DIMAS*Drive* [14], позволяющих учесть взаимовлияние двигателя и нагрузки (при необходимости могут использоваться модели согласующего напряжения сети и двигателя трансформатора и редуктора между двигателем и нагрузкой) и реализовать комплексный анализ работы АД, на основе которого рассматриваются все наиболее важные аспекты функционирования двигателя.

Вышеуказаная программа была использована для автоматизированного выбора двигателя при решении такой производственной задачи. Анализируемые двигатели (4A180S4, 4A160S4, 4A160M4) работали на нагрузку, описываемую следующей циклограммой: $600 \text{ c} - 150 \text{ H} \cdot \text{m}$, $600 \text{ c} - 100 \text{ H} \cdot \text{m}$. Зависимости перегревов обмотки статора рассматриваемых двигателей, рассчитанные программой DIMDrive, представлены на рис. 1.

Согласно полученным зависимостям двигатели 4A180S4 и 4A160M4 при работе на заданную циклограмму удовлетворяют температурному ограничению, соответствующему используемой в двигателях изоляции класса F, а двигатель 4A160S4 не удовлетворяет.

Поэтому дальнейший выбор осуществлялся из двигателей 4A180S4 и 4A160M4. Полученые аналогичным образом зависимости температур подшипниковых щитов трех рассматриваемых двигателей подтверждают обеспечение в них, при работе на заданную циклограмму, температур подшипников ниже допустимых. Автоматизированный выбор с помощью программы DIMDrive проводился по обобщенному критерию, результаты которого представляются в виде экспертных оценок в баллах [15]. При автоматизированном выборе эти экспертные оценки выбираемого АД формируется следующим образом: для среднециклических энергетических критериев КПД (η_{cii}) и коэффициента мощности ($\cos \phi_{cu}$) – у двигателя, который имеет наибольшие показатели из нескольких двигателей, участвующих в выборе, они принимаются за 100 балов, для остальных берётся процент от принятого за 100 балов; для стоимостных, габаритных, весовых критериев, а также критерия среднециклических приведенных затрат ПЗсц - берётся разность большего и текущего значения и определяется отношение к большему значению. Суммарная результирующая оценка является определяющей при выборе.

Результаты автоматизированного выбора при коэффициентах значимости всех составляющих обобщенного критерия равных 1 представлены в табл. 1. При заданных требованиях выбора двигатель 4A160M4 имеет большую сумму балов. В случае использования других коэффициентов значимости либо только отдельных составляющих обобщенного критерия, результаты автоматизированного выбора меняются.

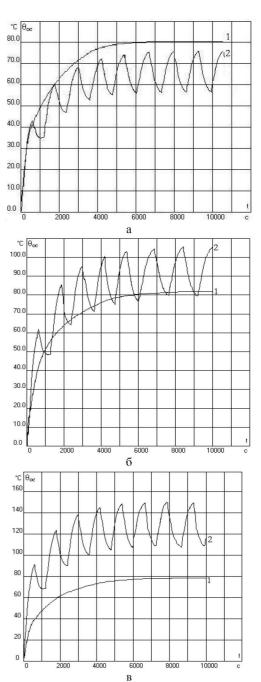


Рис. 1. Зависимости перегревов обмотки статора для продолжительного с номинальным моментом (1) и заданого перемежающегося (2) режимов: а – 4A180S4, б – 4A160M4, в – 4A160S4

Таблица 1

Результаты автоматизированного выбора

Двигатели	160M4	180S4
Показатели		
η_{cu}	98,888	100
$\cos\!\phi_{\mathrm{cu}}$	100	97,96
Приведенные затраты ПЗсц	20,796	0
Macca	25,03	0
Стоимость	22,04	0
Объем	6,24	0
Результат выбора (балл)	273	197,96

Как указывалось выше, задача выбора должна решаться с учетом и других функциональных показателей работы двигателя, а именно механических, виброакустических, динамических, пусковых показателей,

показателей механических характеристик. Результаты расчетов этих показателей, выполненные с помощью программы DIM Drive, представлены в табл. 2.

Таблица 2 Сравнение показателей двигателей при работе на заданную нагрузочную диаграмму

на заданную нагрузочную диаграмму				
Двигатели Параметры	160 M 4	180S4		
ПЗсц АД, грн	3593,7	4537,2		
пси АД	0,8875	0.8987		
соѕфен АД	0,8659	0,8449		
Масса АД, кг	147,269	196,427		
Стоимость АД, грн	2041,53	2618,64		
Объем АД, м ³	0.01332	0,01421		
Прогиб вала, %	4,2	5,8		
Расчетная критическая частота вращения,	13500	9700		
об/мин	15500	3700		
Требуемая прочность вала, кПа	41	43		
Требуемая динамическая грузонодъмность	18,5	22		
подшипников, кН	1-,-			
Уровень механической виброскорости в	0,99	0,7		
осевом направлении, (мм/с)	- /-			
Уровень механической виброскорости в ради-	0,76	0,67		
альном направлении, (мм/с)	,	,		
Общий уровень магнитной виброскорости, (дБ)	94	89		
Уровень магнитного виброускорения, (дБ)	93,8	88,7		
Уровень магнитного шума, (дБ)	77	72		
Уровень вентиляционного шума, (дБ)	77	80		
Кратность пускового тока	5,2	5,88		
Кратность пускового момента	1,05	1,3		
Бросок тока при переходном процессе, А	48	50		
Бросок момента при переходном процессе,	178	182		
И · м				
Время переходного процесса, с,	0,35	0,4		
Относительная жесткость механической	1,7	1,68		
характеристики, о. е.	-/			
Перегрузочная способность, о.е.	2,6	2,3		

Кроме вышеперечисленных показателей в таблице даются среднециклические приведенные затраты, среднециклические энергетические показатели, массо-габаритно-стоимостные показатели.

Программа DIM*Drive* позволяет использовать при автоматизированном выборе как ограничение любой из вышерассмотренных функциональных показателей.

выводы

- 1. Существующие методики выбора АД для различных режимов работы базируются только на косвенной оценке температурного режима и не учитывают других факторов.
- 2. Прямой выбор АД для различных режимов работы заключается в использовании энергетических, массо-габаритно-стоисмотных критериев при выборе и осуществляется после проверки по результатам теплового расчета удовлетворяются ли соответствующие температуры задаваемым ограничениям.
- 3. Выбор может осуществляться с учетом определенных ограничений, к числу которых относят механические, виброакустические, динамические, пусковые показатели, показатели механических характеристик.

СПИСОК ЛИТЕРАТУРЫ

- 1. ГОСТ 183-74. Машины электрические вращающиеся. Общие технические требования
- 2. Нестационарные тепловые расчеты в электрических машинах. Беспалов В.Я., Дунайкина Е.А., Мощинский Ю.А./ Под редакцией Б.К.Клокова. М.: Моск. энерг. ин-т, 1987. 72 с.

- 3. Дунайкина Е.А. Разработка модификации асинхронных двигателей единой серии 4A (h=56-132 мм) для кратковременных режимов: Автореф. дис... канд. техн. наук: 05.09.01 / Московский ордена Ленина и ордена Октябрьской революции энергетический институт. Москва, 1986. 20 с.
- 4. Москаленко В.В. Автоматизированный электропривод. –М.: Энергоатомиздат, 1988. 418 с.
- 5. Справочник по автоматизированному электроприводу / Под ред. В.А. Елисеева, А.В. Шинянского. М.: Энергоатомиздат, 1983. – 616 с.
- 6. Справочник по электрическим машинам.: В 2 т. / Под общ. редакцией докт. техн. наук И.П. Копылова, канд. техн. наук Б.К. Клокова. М.: Энергоатомиздат, 1988. Т1. 456 с. Т2. 688 с.
- 7. Чиликин М.Г., Ключев В.И., Сандлер А.С. Теория автоматизированного электропривода. М.: Энергия, 1979. 616 с. Клоков Б.К. Расчет вытеснения тока в стержнях произвольной конфигурации // Электротехника. 1969. №9. C_{-} 48 -51
- 8. Петрушин В.С., Рябинин С.В., Якимец А.М. Анализ потерь и теплового состояния асинхронного двигателя при частотном управлении. Пращі Іиституту єлектродинаміки НАН України. Київ: 1ЕД НАН України,1999. Вин. 1. С. 31-36
- 9. Петрушин В.С., Рябинин С.В., Якимец А.М. Расчет температур конструктивных элементов асинхронных двигателей в динамических режимах. // Вісник На-ціонального упіверситету "ЛьвІвська политехніка", № 403, Львів, 2000, С. 145-149.
- 10. Петрушин В.С., Рябинин С.В., Якимец А.М. Анализ потерь и теплового состояния асинхронного двигателя при параметрическом управлении // Техническая электродинамика, №4, 2000, С. 34-38.
- 11. Петрушин В.С., Якимец А.М. Универсальная тепловая схема замещения регулируемых асинхронных двигателей // Електромашинобудування та електрообладнання: Міжвід. наук.-техн. 3б. 2002. Вип. 59. С. 75-79.
- 12. Петрушин В.С., Якимец А.М., Кобрин В.Л. Тепловые расчеты нестационарных режимов работы асинхронных двигателей регулируемых электроприводов // Електротехніка і електромеханіка: Науково-практичний журнал. − 2003. №4. С. 65 68.
- 13. Петрушин В.С., Якимец А.М., Груша А.В, Каленик О.В. Энергетические и тепловые показатели регулируемых асинхронных двигателей с учетом высших пространственновременных гармоник // Електромашинобудування та електрообладнання: Міжвід.наук.-техн. зб., вип. 70, 2008, С. 68 71.
- 14. Петрушин В.С., Рябинин С.В., Якимец А.М. Программный продукт "DIMASDrive". Программа анализа работы, выбора и проектирования асинхронных короткозамкнутых двигателей систем регулируемого электропривода (свидетельство о регистрации программы ПА №4065). Киев: Министерство образования и науки Украины, Государственный департамент интеллектуальной собственности, 26.03.2001.
- 15. Петрушин В.С. Поэтапный выбор серийных асинхронных двигателей для систем частотного электропрвода//Технічнат електродинаміка. Тематичний випуск. 2002. Частина 3. С. 41 44.

Поступила 22.10.08

Петрушин Виктор Сергеевич, д.т.н., проф., Якимец Андрей Миронович, к.т.н., доц., Груша Андрей Васильевич Одесский национальный политехнический университет Украина, 65044, Одесса, пр-т Шевченко, 1, ОНПУ, кафедра "Электрические машины" тел. (8-048) 779-74-94, 779-76-80, e-mail: victor_petrushin@ukr.net, yakimets@i.ua