

Общероссийский математический портал

А. В. Соколов, И. В. Цевух, О существовании бинарных С-кодов длины N=32 с заданным значением пик-фактора спектра Уолша–Адамара, $\Pi\Phi MT$, 2017, выпуск 2(31), 91–95

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.136.56.65

23 сентября 2017 г., 15:21:26

УДК 510.644

О СУЩЕСТВОВАНИИ БИНАРНЫХ С-КОДОВ ДЛИНЫ N=32 С ЗАДАННЫМ ЗНАЧЕНИЕМ ПИК-ФАКТОРА СПЕКТРА УОЛША – АДАМАРА

А.В. Соколов, И.В. Цевух

Одесский национальный политехнический университет

ON THE EXISTENCE OF BINARY C-CODES OF LENGTH N = 32 WITH A PREDETERMINED VALUE OF PAPR OF WALSH – HADAMARD SPECTRUM

A.V. Sokolov, I.V. Tsevukh

Odessa National Polytechnic University

Проведена спектральная классификация последовательностей длины N=32 в соответствии со структурой и пикфактором их спектра Уолша — Адамара в результате чего выделено 40 различных видов спектральных наборов. Рассчитаны предельно достижимые мощности С-кодов с заданным значением пик-фактора. Учитывая взаимосвязь пикфактора спектра Уолша — Адамара и расстояния нелинейности двоичной последовательности длины N=32, установлены мощности классов данных последовательностей, обладающих заданным значением расстояния нелинейности.

Ключевые слова: преобразование Уолша – Адамара, пик-фактор, расстояние нелинейности.

The spectral classification of sequences of length N=32 in accordance with the structure and the value of the PAPR (Peak-to-Average Power Ratio) of Walsh – Hadamard spectrum resulting in 40 different spectral sets was performed. The maximal achievable cardinality of C-codes with a predetermined value of PAPR was calculated. Taking into account the interconnection between PAPR value of the Walsh – Hadamard spectrum and nonlinearity distance of binary sequence of length N=32, the cardinalities of classes of sequences with a determined value of nonlinearity distance were found.

Keywords: Walsh - Hadamard transform, PAPR, nonlinearity distance.

Памяти д.т.н, проф. Михаила Ивановича Мазуркова

Введение

Дальнейшее развитие беспроводных сетей передачи данных, в частности, четвертого и пятого поколений во многом связывают с совершенствованием и развитием технологии кодового разделения каналов CDMA. В качестве своего базиса технология кодового разделения каналов использует систему ортогональных функций, в роли которых могут выступать специально подобранные кодовые последовательности.

Одной из перспективных модификаций технологии CDMA является MC-CDMA (Multi Code Code Division Multiple Access), где в качестве набора ортогональных функций выступают функции Уолша [1].

В системе МС-СDMA вектор бинарных данных $B=(b_i), i=\overline{0,N-1}$ подвергается ортогональному преобразованию. Каждый бит данных b_i изменяет знак одной из N ортогональных функций дискретного времени $h_i(t)$, а выход является суммой этих N модулированных функций. Тогда передаваемый сигнал представляет собой спектр Уолша — Адамара последовательности B

$$S_B(t) = \sum_{i=0}^{N-1} b_i h_i(t).$$

Таким образом, выходной сигнал можно представить как произведение вектора B, составленного из бит данных, поступивших от каждого пользователя и матрицы Адамара H

$$S = BH$$
,

где матрица Адамара H формируется в соответствии со следующим рекуррентным правилом [2]

$$\boldsymbol{H}_{2^{k}} = \begin{bmatrix} \boldsymbol{H}_{2^{k-1}} & \boldsymbol{H}_{2^{k-1}} \\ \boldsymbol{H}_{2^{k-1}} & -\boldsymbol{H}_{2^{k-1}} \end{bmatrix}, \ \boldsymbol{H}_{1} = [1].$$

Обладая многочисленными преимуществами, такими как высокая помехоустойчивость, гибкость распределения пропускной способности системы среди абонентов, экономичность и хорошая электромагнитная совместимость, технология МС-СDМА не лишена недостатков. Один из самых значимых недостатков технологии МС-СDМА заключается в высоких значениях пик-фактора применяемых в ней сигналов. Данное обстоятельство приводит к неэффективному использованию мощности передатчика, нелинейным искажениям и, как следствие, удорожанию стоимости применяемого оборудования при снижении потенциально достижимой помехоустойчивости.

Пик-фактор применяемых в системе сигналов определяется величиной пиковых значений трансформант Уолша – Адамара [3]

$$\kappa = \frac{P_{\text{max}}}{P_{co}} = \frac{1}{N} \max_{t} \left\{ \left| S_{B}(t) \right|^{2} \right\}, \tag{0.1}$$

где P_{\max} — пиковая мощность сигнала $S_B(t)$; P_{cp} — средняя мощность сигнала $S_B(t)$; N — длина сигнала $S_B(t)$.

В настоящий момент предложено значительное количество методов борьбы с высоким значением пик-фактора сигналов, представляющих собой трансформанты преобразования Уолша – Адамара, однако, наиболее перспективным является метод, основанный на использовании строго обоснованного математического аппарата, который позволяет снизить значения пикфактора – применение С-кодов.

1 С-код

Определение 1.1 [3]. С-кодом, или кодом постоянной амплитуды называется множество кодовых слов, обладающих заданным, фиксированным для каждого кодового слова значением пик-фактора к.

Применение С-кода сводится к замене подаваемых на вход кодера сообщений b_j длины m на такие последовательности c_i длины n, которые обладали бы наименьшим значением пикфактора к (рисунок 1.1).

Одним из возможных базисов для построения С-кодов являются бент-последовательности, обладающие равномерным по модулю спектром Уолша — Адамара. Тем не менее, бент-последовательности существуют только для длин $N=2^k$, k=2,4,6,8,... [4], в то время как практика использования технологии МС-СDMA требует большего ассортимента различных длин сигналов и, соответственно, реализуемого числа кодовых каналов.

В работах [5]—[7] построены полные множества векторов длин N=20, N=24 и N=28, обладающих минимальным значением пикфактора. В работе [8] разработан регулярный метод синтеза последовательностей длины N=32, обладающих минимальным значением пик-фактора.

Тем не менее, с практической точки зрения, востребованными оказываются кодовые слова Скода, гарантировано обладающие значением пикфактора, не превосходящим некоторую заданную величину, что диктует необходимость исследования возможности построения С-кодов с заданным значением пик-фактора $\kappa \leq \kappa_0$.

Целью настоящей статьи является исследование возможности построения С-кодов длины N=32 наибольшей возможной мощности при заданном значении пик-фактора κ_0 .

Изучение характеристик полного кода длины N=32 сопряжено со значительными вычислительными трудностями, т. к. подразумевает рассмотрение множества из $J=2^{32}=4294967296$ элементов. Данное обстоятельство диктует необходимость разработки конструктивного метода исследования возможных значений пик-фактора.

2 Полином Жегалкина

Одной из лучших теоретических баз для построения такого метода является математический аппарат полиномов Жегалкина (алгебраической нормальной формы).

Рассмотрим двоичную последовательность длины N=32

$$T = \{t_0, t_1, ..., t_{31}\}, t_i \in \{0,1\}, i = 0,1,...,N-1,$$
 (2.1) например,

$$T = \{1111000001100111111010011011111110\}.$$
 (2.2)

Определение 2.1 [9]. Полиномом Жегалкина $\phi(x_1, x_2, ..., x_k)$ или алгебраической нормальной формой (АНФ) последовательности T называется многочлен $k \leq \log_2 N$ переменных с коэффициентами $a_i \in \{0,1\}$, где в качестве умножения принята операция конъюнкции, а в качестве сложения – операция суммирования по модулю 2

$$\varphi(x_1, x_2, ..., x_k) = \bigoplus_{i=0}^{N-1} a_i X_i^s,$$

где X_i^s — термы полинома Жегалкина степени $s = wt\{X\}; wt$ — вес Хэмминга.

Рассмотрим все возможные термы для последовательностей T длины N=32

$$X_{18} = \{10010\} \ \, x_1x_4 \quad X_{19} = \{10011\} \ \, x_1x_4x_5$$

$$X_{20} = \{10100\} \ \, x_1x_3 \quad X_{21} = \{10101\} \ \, x_1x_3x_5$$

$$X_{22} = \{10110\} \ \, x_1x_3x_4 \quad X_{23} = \{10111\} \ \, x_1x_3x_4x_5$$

$$X_{24} = \{11000\} \ \, x_1x_2 \quad X_{25} = \{11001\} \ \, x_1x_2x_5$$

$$X_{26} = \{11010\} \ \, x_1x_2x_4 \quad X_{27} = \{11011\} \ \, x_1x_2x_4x_5$$

$$X_{28} = \{11100\} \ \, x_1x_2x_3 \quad X_{29} = \{11101\} \ \, x_1x_2x_3x_5$$

$$X_{30} = \{11110\} \ \, x_1x_2x_3x_4 \quad X_{31} = \{11111\} \ \, x_1x_2x_3x_4x_5$$

Коэффициенты $a_i = \{a_0, a_1, ..., a_{N-1}\}$ могут быть найдены путем выполнения преобразования Рида – Маллера, т. е. путем умножения исходной последовательности T (2.1) на матрицу Рида – Маллера A_v , которую можно определить с помощью следующего рекуррентного правила

$$A_0 = \begin{bmatrix} 1 \end{bmatrix}, \ A_v = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \otimes A_{v-1} = \begin{bmatrix} A_{v-1} & 0 \\ A_{v-1} & A_{v-1} \end{bmatrix},$$

где \otimes – произведение Кронекера.

Для нашего примера коэффициенты преобразования Рида – Маллера будут иметь вид

$$\{a_i\} = T \cdot A_{32} =$$

 $= \{1000100011110100100110001001011110\}\,,$ тогда полином Жегалкина будет иметь вид

$$\phi = 1 + x_3 + x_4 + x_1x_4 + x_2x_4 + x_3x_4 +$$

$$+ x_1x_2x_3x_4 + x_2x_5 + x_1x_2x_5 + x_1x_2x_3x_5 +$$

$$+ x_2x_4x_5 + x_3x_4x_5 + x_1x_3x_4x_5 + x_2x_3x_4x_5.$$

Подставляя в полученный полином значения X_i , в точности получаем исходную последовательность T.

3 Метод исследования значений пик-фактора

Метод исследования значений пик-фактора основан на следующем предположении:

Предположение. Суммирование булевой функции с любой аффинной булевой функцией не меняет структуру её спектра, а лишь приводит к перестановке или знаковому кодированию его элементов.

На основе данного предположения запишем метод поиска различных спектральных структур для векторов длины 32 в виде шагов.

функциям (таблица 3.1). В таблице 3.1 приняты следующие обозначения: **0** — обнуленное значение, ? — значение, изменяемое в процессе поиска.

Шаг 2. Производим последовательное изменение оставшихся позиций, придавая им значения 0 или 1.

В случае длины исходной последовательности N=32 на данном этапе необходимо рассмотреть $2^{32}/2^6=2^{26}=67\,108\,864$ различные последовательности, что является вычислительно осуществимым.

Шаг 3. Из множества последовательностей, полученных на *Шаге* 2, выбираем такие, которые обладают различной спектральной структурой.

Результаты использования предложенного метода относительно последовательностей длины N=32 приведены в таблице 3.2 в виде спектральной классификации, где для каждого возможного набора рассчитаны значения пикфактора к в соответствии с (0.1).

Отметим, что значение пик-фактора последовательностей напрямую связано с уровнем их нелинейности, который является ключевой характеристикой при использовании той или иной последовательности в криптографических приложениях.

Основным критерием, по которому производится исследование нелинейных свойств двоичных последовательностей длины $N=2^k$ является расстояние нелинейности, которое определяется как степень удаления данной последовательности от аффинного кода $\{A_i\}$ [10]

$$N_f = dist(T, A_j), \quad j = 1, 2^{k+1}$$

С другой стороны известно, что расстояние нелинейности произвольной бинарной последовательности T длины $N=2^k$ определяется через её спектральные коэффициенты преобразования Уолша — Адамара с помощью следующего соотношения

$$N_f = 2^{k-1} - \frac{1}{2} \max_{v \in \mathbb{Z}_2^k} |S_T(v)|.$$
 (3.1)

Таким образом, каждый сконструированный С-код можно рассматривать как множество кодовых слов, обладающих заданным значением нелинейности, определяемым в соответствии с (3.1). Значения нелинейности N_f для каждого класса последовательностей указаны в таблице 3.2.

Таблица $3.1 - \Pi$ озиции аффинных термов в последовательности длины N = 32

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	21	32
0	0	0	?	0	?	?	?	0	?	?	?	?	?	?	?	0	?	?	?	?	?	?	?	?	?	?	?	?	?	?	?
0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Таблица 3.2 – Возможные спектральные структуры векторов длины N=32

		вможные спектрал				
№ п/п	№ класса	Набор		Пик-фактор к	N_f	Мощность
1	1.1.	{32(1), 0(31)}		32	0	64
2	2.1.	{30(1), 2(31)}		28.125	1	2 048
3	3.1.	{28(1), 4(15), 0(1	16)}	24.5	2	31 744
4	4.1.	{26(1), 6(7), 2(24)	4)}	21.125	3	317 440
5	5.1.	{24(1), 8(7), 0(24	4)}	18	4	79 360
6	5.2.	{24(1), 8(3), 4(16	6), 0(12)}	18	4	2 222 080
7	6.1.	{22(1), 10(3), 6(4	4), 2(24)}	15.125	5	2 222 080
8	6.2.	{22(1), 10(1), 6(1)	10), 2(20)}	15.125	5	10 665 984
9	7.1.	{20(1), 12(3), 4(1)	12), 0(16)}	12.5	6	1 111 040
10	7.2.	{20(1), 8(6), 4(15)	5), 0(10)}	12.5	6	28 442 624
11	7.3.	{20(1), 12(1), 4(3	30)}	12.5	6	1 777 664
12	7.4.	{20(1), 12(1), 8(4	4), 4(14), 0(12)}	12.5	6	26 664 960
13	8.1.	{18(1), 14(3), 2(2	28)}	10.125	7	317 440
14	8.2.	{18(1), 14(1), 10	(2), 6(6), 2(22)}	10.125	7	26 664 960
15	8.3.	{18(1), 10(3), 6(9	9), 2(19)}	10.125	7	142 213 120
16	8.4.	{18(1), 10(1), 6(1)	15), 2(15)}	10.125	7	28 442 624
17	8.5.	{18(1), 14(1), 6(1	12), 2(18)}	10.125	7	17 776 640
18	9.1.	{16(1), 12(2), 8(4	4), 4(14), 0(11)}	8	8	213 319 680
19	9.2.	{16(2), 12(2), 4(1)	14), 0(14)}	8	8	3 809 280
20	9.3.	{16(2), 8(4), 4(16	6), 0(10)}	8	8	19 998 720
21	9.4.	{16(2), 8(8), 0(22	2)}	8	8	1 666 560
22	9.5.	{16(4), 0(28)}		8	8	9 920
23	9.6.	{16(1), 12(1), 8(6	6), 4(15), 0(9)}	8	8	284 426 240
24	9.7.	{16(1), 8(12), 0(1	19)}	8	8	17 776 640
25	9.8.	{16(1), 8(8), 4(16	6), 0(7)}	8	8	106 659 840
26	10.1.	{14(3), 10(1), 6(7)	7), 2(21)}	6.125	9	20 316 160
27	10.2.	{14(2), 10(4), 6(4)	4), 2(22)}	6.125	9	26 664 960
28	10.3.	{14(2), 10(2), 6(1)	10), 2(18)}	6.125	9	319 979 520
29	10.4.	{14(1), 10(5), 6(7)	7), 2(19)}	6.125	9	426 639 360
30	10.5.	{14(1), 10(3), 6(1)	13), 2(15)}	6.125	9	568 852 480
31	11.1.	{12(4), 8(4), 4(12	2), 0(12)}	4.5	10	115 548 160
32	11.2.	{12(4), 4(28)}		4.5	10	31 744 000
33	11.3.	{12(6), 4(10), 0(1	16)}	4.5	10	888 832
34	11.4.	{12(3), 8(6), 4(13	3), 0(10)}	4.5	10	426 639 360
35	11.5.	{12(2), 8(8), 4(14	4), 0(8)}	4.5	10	666 624 000
36	11.6.	{12(1),8(10),4(15)	5),0(6)}	4.5	10	170 655 744
37	12.1.	{10(6), 6(10), 2(1	16)}	3.125	11	449 748 992
38	12.2.	{10(4), 6(16), 2(1	12)}	3.125	11	106 659 840
39	13.1.	{8(12), 4(16), 0(4	4)}	2	12	13 332 480
40	13.2.	{8(16), 0(16)}		2	12	14 054 656
	Всего	0:			429	$4967296 = 2^{32}$

Таблица 3.3 – Максимально возможные мощности C-кодов длины N=32

κ_0	2	3.125	4.5	6.125	8
J_1	27 387 136	556 408 832	1 412 100 096	1 362 452 480	647 666 880
J_{max}	27 387 136	583 795 968	1 995 896 064	3 358 348 544	4 006 015 424
κ_0	10.125	12.5	15.125	18	21.125
J_1	215 414 784	57996288	12888064	2301 440	317 440
J_{max}	4 221 430 208	4 279 426 496	4 292 314 560	4 294 616 000	4 294 933 440
κ_0	24.5	28.125	32	_	_
J_1	31 744	2 048	64	_	_
J_{max}	4 294 965 184	4 294 967 232	4 294 967 296	_	_

В таблице 3.2 для представления спектральных наборов принята следующая форма: число перед круглыми скобками характеризует абсолютное значение спектрального коэффициента, тогда как число в круглых скобках показывает, сколько раз он встречается в спектральном векторе. Например, найдем спектр последовательности (2.2)

$$S_T = H_{32}T =$$

$$= \{ -8 \quad 4 \quad 4 \quad 8 \quad -8 \quad 4 \quad -4 \quad 0$$

$$4 \quad 0 \quad 0 - 12 \quad -12 \quad 0 \quad -8 \quad -4$$

$$4 \quad 0 \quad 0 \quad 4 \quad -4 \quad -8 \quad 0 \quad 4$$

$$0 - 4 \quad -4 \quad 0 \quad -8 \quad 4 \quad 12 \quad 0 \},$$

что исходя из принятой нотации соответствует спектральному набору $\{12(3), 8(6), 4(13), 0(10)\}$ и величине пик-фактора $\kappa = 4.5$.

Изучение данных таблицы 3.2 позволяет рассчитать предельные мощности С-кодов с длиной кодового слова N=32 и заданным значением пик-фактора $\kappa \leq \kappa_0$, которые принципиально могут быть построены для некоторого заданного значения пик-фактора κ_0 . В таблице 3.3 приведены максимально возможные мощности С-кодов длины N=32, которые могут быть построены.

В таблице 3.3 под J_1 понимается количество последовательностей длины N=32, которые обладают заданным уровнем пик-фактора κ_0 , тогда как под $J_{\rm max}$ понимается количество последовательностей, которые обладают уровнем пик-фактора не ниже, чем величина κ_0 . Таким образом, $J_{\rm max}$ является границей мощности С-кода длины N=32 для каждого заданного значения κ .

Заключение

Отметим основные результаты проведенных исследований:

- предложен алгоритм спектральной классификации последовательностей длины N=32, основанный на использовании свойств коэффициентов АНФ и позволяющий сократить перебор множества исследуемых последовательностей в 64 раза;
- проведена спектральная классификация полного множества последовательностей длины N=32, в результате чего рассчитаны теоретически предельно достижимые мощности С-кодов с заданным значением пик-фактора κ_0 ;
- определены мощности множеств последовательностей длины N=32, обладающих заданным значением расстояния нелинейности $N_{\rm c}$.

Таким образом, изложенные в статье результаты определяют мощности С-кодов длины

N=32, которые принципиально могут быть сконструированы и применены в технологии МС-СDMA, а также мощности множеств последовательностей данной длины, обладающие заданным расстоянием нелинейности, которые применимы в криптографических приложениях, например, при синтезе псевдослучайных ключевых последовательностей или S-блоков подстановки.

ЛИТЕРАТУРА

- 1. Бакулин, $M.\Gamma$. Технология OFDM / М.Г. Бакулин, В.Б. Крейнделин, А.М. Шлома, А.П. Шумов. М.: Горячая линия Телеком, 2016. 352 с.
- 2. *Мазурков*, *М.И.* Системы широкополосной радиосвязи / М.И. Мазурков // Одесса: Наука и Техника. -2010.-340 с.
- 3. *Paterson, K.G.* Sequences For OFDM and Multi-code CDMA: two problems in algebraic coding theory / K.G. Paterson // Sequences and their applications. Seta 2001. Second Int. Conference (Bergen, Norway, May 13–17, 2001). Proc. Berlin: Springer, 2002. P. 46–71.
- 4. Токарева, Н.Н. Бент-функции: результаты и приложения. Обзор работ / Н.Н. Токарева // Прикладная дискретная математика. Томск, 2009. Сер. № 1 (3). С. 15—37.
- 5. Соколов, А.В. Конструктивный метод синтеза последовательностей длины N=20 с оптимальным спектром Уолша Адамара / А.В. Соколов. Научные труды ОНАС им. АС Попова, 2015.- N 2.- C. 118-126.
- 6. Sokolov, A.V. Regular synthesis method of the sequences of length N=24 with optimal PAPR of Walsh-Hadamard spectrum / A.V. Sokolov // Far East Journal of Electronics and Communications. 2016. Vol. 16, No. 2. P. 459–469.
- 7. Соколов, А.В. Нескінченні сімейства послідовностей Пелі з оптимальним пік-фактором спектра Уолша Адамара / А.В. Соколов, О.О. Гаркуша. Наукові праці ОНАЗ ім. О.С. Попова. 2016. N 2. C. 163-169.
- 8. *Мазурков*, *М.И.* Рекуррентные методы синтеза последовательностей с оптимальным пикфактором спектра Уолша Адамара / М.И. Мазурков, А.В. Соколов // Информатика и математические методы в моделировании. 2015. Т. 5, N = 4. С. 203–209.
- 9. *Ростовцев*, $A.\Gamma$. Криптография и защита информации / $A.\Gamma$. Ростовцев. СПб.: Мир и Семья. 2002.
- 10. Соколов, А.В. Новые методы синтеза нелинейных преобразований современных шифров / А.В. Соколов. Lap Lambert Academic Publishing, Germany, 2015. 100 с.

Поступила в редакцию 24.02.17.