Грень В.И., студент Курочкин В.О., студент Курочкин В.О., студент Кузнецов Н.А., старший преподаватель Кафедра информационных систем Кафедра компьютерных интеллектуальных систем и сетей Одесский Национальный Политехнический Университет

ИССЛЕДОВАНИЕ СПЕЦИАЛИЗИРОВАННЫХ КОМПЬЮТЕРНЫХ СИСТЕМ НА БАЗЕ FPGA

В рамках исследования расмотрены вопросы повышения достоверности результатов работы утройств на базе FPGA при характерных неисправностях. Представлена среда для моделирования и отладки таблиц поиска (Look-up table - LUT).

Введение. Часто для разработки и исследования устройств, построенных с использованием таблиц поиска (Look-up table или LUT), необходимы сложные программные и аппаратные комплексы. Так для разработки устройств с использованием микросхем FPGA необходимо иметь саму микросхему, как аппаратное обеспечение для отладки проекта [1]. Также для более глубокой разработки нужно владеть информацией об описании таблиц поиска в конкретной среде проектирования. При разработке программных таблиц поиска ситуация еще хуже, так как не существует среды отладки для таблиц поиска, реализованных программным путем.

Цель работы. Целью исследования является создание актуальной системы моделирования и отладки таблиц поиска (Look-up table - LUT), позволяющей оценить повышение достоверности результатов работы устройств на базе FPGA при характерных неисправностях.

Основная часть работы. В процессе эксплуатации вычислительных устройств построенных на FPGA часто возникают характерные неисправности, такие как «закоротка», «константные неисправности», «заростание» блоков памяти нулями или единицами. В этой связи возникает задача оценки влияния неисправности на достоверноять окончательного результата выдаваемого устройством. Для решения данной задачи была разработана система анализа результов работы FPGA при характерных неисправностях [2].

Система позволяет задавать содержимое таблиц поиска (Look-up table - LUT), которые являются основой любого FPGA устройства. Разработчики ПЛИС

на FPGA используют в основном 4-х, 5-ти, 7-ми адресные LUT-ы [3-5]. Система позволяет смоделировать работу любого FPGA устройства построенного на базе N-адресного LUT-а.

В процессе разработки был создан набор классов, реализующих определенные функции системы. Каждый класс может использоваться отдельно внешними программами сторонних разработчиков, что увеличивает ценность системы.

В системе присутствует удобный функционал, позволяющий задавать содержимое LUT-ов, генерировать входные последовательности, задавать неисправности и вести автоматический анализ результатов моделирования.

Для примера возьмем задачу сортировки единиц в двоичном числе, состоящем из четырех разрядов. Имеем X = [x1, x2, x3, x4]. Например если $X = 1011_2$, то результат должен быть равен $Y = [y1, y2, y3, y4] = 1110_2$.

Таблица истинности работы данного устройства представлена в таблице 1. При этом сигналы X1, Y1- считаем старшими разрядами, а сигналы X4,Y4 – младшими разрядами.

Основная часть схемы данного устройства будет представлена на базе четырёх LUT, каждый из которых имеет 4-ре адресных входа. Первый LUT размещает значение выхода разряда Y1, второй Y2, третий Y3, четвёртый Y4.

В результате при поступления на вход 4-х адресных LUT-ов комбинации 1011_2 , в соответствии с таблицей истинности, на выходе появится комбинация 1110_2 , соответсвующая набору \mathbb{N} 211.

Набор		0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
входы	X1	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	X2	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
	X3	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
	X4	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1
выходы	Y1	0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Y2	0	0	0	1	0	1	1	1	0	1	1	1	1	1	1	1
	Y3	0	0	0	0	0	0	0	1	0	0	0	1	0	1	1	1
	Y4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Таблица 1 – Таблица истинности

Схема на базе LUT и её анализ представлены на рисунке 1. Анализ схемы не составляет труда, как и ее построение. Начальный набор элементов системы будет расширятся. Так как элементы программы являются внешними классами и связь между ними организована с помощью независимых блоков входов и выходов, разработка операционных элементов сторонними разработчиками не составляет труда.

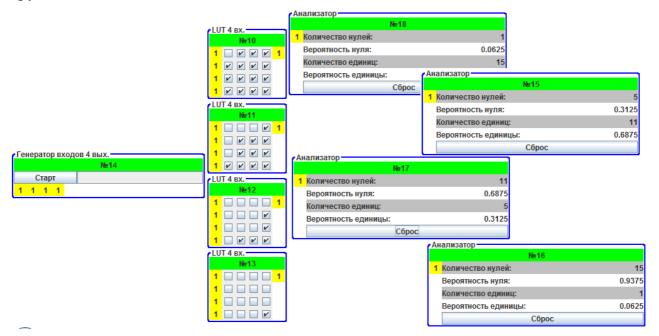


Рисунок 1— Анализ схемы сортировки единиц

Реализованная модель таблиц поиска обладает достаточной универсальностью и может применятся для моделирования булевых функций и стандартных логических элементов.

Выводы. Разработанная среда моделирования решает задачи построения схем с использованием таблиц поиска и анализа их работы. Таблицы поиска могут применятся для ускорения решения задач, требующих многоранговые комбинационные схемы, так как при любом наборе входных значений скорость выборки из таблицы постоянна и как правило достаточная для быстрого срабатывания устройства.

Востребованность программы напрямую зависит от необходимости использовать таблицы поиска. Так как технология FPGA основана на LUT, и является лидирующей на рынке, то и разработка подобного программного модуля не лишена смысла.

Использование программы не ограничивается анализом программных таблиц поиска или LUT в FPGA схемах. Благодаря открытому исходному коду и модульности разработанных компонентов систему легко можно дополнить нужным операционным элементом. При помощи стандартных элементов вполне возможно моделировать логические элементы и схемы, что является ценной возможностью в областях информационных технологий, связанных с использованием таблиц поиска.

Руководитель старший преподаватель ИКС Кузнецов Н.А.

Литература

Грушвицкий Р.И. Проектирование систем на микросхемах с программируемой структурой / Р. И. Грушвицкий, А.Х. Мурсаев, Е.П. Угрюмов. – СПб.: БХВ, 2010. – 650 с.

Paul S. Reconfigurable Computing Using Content Addressable Memory for Improved Performance and Resource Usage / S. Paul, S. Bhunia // Proceedings of Design Automation Conference ACM/IEEE (DAC-2008). – Anaheim, 2008. – P. 786–791.

Maxfield C. The Design Warriors Guide to FPGAs: Design, Tools and Flows / C. Maxfield. – USA, Burlington: Newnes, 2004. – 542 p.

Дрозд Ю.В. Естественные ресурсы компьютерных систем на базе FPGA / Ю.В. Дрозд, А.В. Дрозд, Н.А. Кузнецов // Труды Одесского политехнического университета. – Одесса, 2013. – Вып. 2 (41). – С. 223–226.

Кузнецов Н.А. Метод повышения достоверности результатов, вычисляемых на FPGA / Н.А. Кузнецов, П.А. Якимов, Ю.В. Дрозд // Труды международной научно-практической конференции "Современные информационные и электронные технологии". – Одесса, 2012. – С. 94.