УДК 539.3

В.Ф. Оробей, д-р техн. наук, проф., **Г.В. Кострова,** канд. техн. наук, доц., Одес. нац. политехн. ун-т

УСТОЙЧИВОСТЬ БАЛОК С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

В.Ф. Оробей, Г.В. Кострова. Стійкість балок з розподіленими параметрами. Запропоновано нову методику розв'язання крайових задач стійкості балок, які мають змінні параметри. Викладено алгоритм, який базується на чисельно-аналітичному варіанті метода граничних елементів. Дано сопоставлення з відомими результатами, які отримані іншим методом. Наведено рішення задач стійкості балок, які відсутні в довідникових даних.

В.Ф. Оробей, Г.В. Кострова. Устойчивость балок с распределенными параметрами. Предложена новая методика решения краевых задач устойчивости балок с распределенными параметрами. Изложен алгоритм, который базируется на численно-аналитическом варианте метода граничных элементов. Дано сравнение с известными результатами, полученными другим методом. Приведены решения задач устойчивости балок, которые отсутствуют в справочных данных.

V.F. Orobey, G.V. Kostrova. **Stability of beams with distributed parameters**. A new method for solving boundary value problems of stability of beams with distributed parameters. The algorithm, which is based on the numerical-analytical boundary element method. A comparison with the known results obtained by other methods. The solutions of problems of stability of beams, which are absent in the reference data.

Стержни с переменной по длине жесткостью имеют более высокие параметры прочности, жесткости и устойчивости по сравнению со стержнями с постоянной жесткостью. Поэтому в тяжело нагруженных деталях машин и сооружениях применяются балочные элементы с переменной жесткостью (шатуны в цилиндропоршневых механизмах, лопатки турбин, дымовые трубы, колонны сооружений и др.). Для задач устойчивости балок с такими свойствами основное дифференциальное уравнение имеет вид [1...3]

$$\frac{d^2}{dx^2} \left[EI(x) \frac{d^2 v(x)}{dx^2} \right] + \frac{d}{dx} \left[N(x) \frac{dv(x)}{dx} \right] = 0, \tag{1}$$

где EI(x) — функция поперечной жесткости, к Hm^2 ;

v(x) — поперечный прогиб, м;

N(x) — функция нормальной силы в сечении балки, кН.

Видно, что уравнение (1) является уравнением с переменными коэффициентами. В свою очередь, данный факт приводит к тому, что интегрируемые в замкнутой форме случаи составляют редкое исключение [1]. Можно воспользоваться численными методами (например, МКЭ) для решения задач устойчивости балок с переменными параметрами, но здесь необходимо доказывать достоверность и точность результатов. От подобных сложностей свободен численно-аналитический вариант метода граничных элементов (МГЭ), где точно выполняются граничные условия в опорах и внутри балок [4...6]. В этой связи весьма привлекательным моментом будет являться применение алгоритма МГЭ к решению уравнения (1). Результаты решения задач устойчивости МГЭ для тонкостенных балок и арок показывают, что погрешность не превышает 3 %, а алгоритм весьма прост и легко программируется на современных алгоритмических языках [5, 6].

Основная идея предлагаемой методики заключается в том, что балка с определенными условиями опирания разбивается на n частей. В пределах каждой части все параметры балки считаются постоянными. В этом случае уравнение (1) становится уравнением с постоянными коэффициентами. Для i-го участка оно принимает вид

$$EI_{i}\frac{d^{4}v(x)}{dx^{4}} + N_{i}\frac{d^{2}v(x)}{dx^{2}} = 0.$$
 (2)

© В.Ф. Оробей, Г.В. Кострова, 2011

Решение задачи Коши для этого уравнения хорошо известно. Если поперечная сила остается перпендикулярной первоначальной прямолинейной оси стержня, то матрица фундаментальных ортонормированных функций уравнения (2) принимает вид (для *i*-го участка) [4]

$$\mathbf{A}_{i} = \begin{array}{c|cccc} 1 & 2 & 3 & 4 \\ \hline 1 & A_{12} & -A_{13}/EI_{i} & -A_{14}/EI_{i} \\ \hline & A_{22} & -A_{12}/EI_{i} & -A_{13}/EI_{i} \\ \hline & & -A_{32}\cdot EI_{i} & A_{22} & A_{12} \\ \hline & & & 1 \\ \hline & & & 1 \\ \hline \end{array};$$

$$A_{12} = \sin t_{i}x/t_{i};$$

$$A_{13} = (1 - \cos t_{i}x)/t_{i}^{2};$$

$$A_{14} = (t_{i}x - \sin t_{i}x)/t_{i}^{3};$$

$$A_{22} = \cos t_{i}x;$$

$$A_{32} = -t_{i}x\sin t_{i}x;$$

$$t_{i} = \sqrt{N_{i}/EI_{i}}.$$

$$(3)$$

Здесь в матрицу A_i введены параметры жесткости стержня для более простого выполнения условий стыковки участков во внутренних точках. Таким образом, система с распределенными параметрами заменяется множеством систем с постоянными параметрами. При достаточно большом числе участков ступенчатые функции коэффициентов мало отличаются от заданных функций коэффициентов, и решение получается весьма точным и достоверным. Опыт решения задач устойчивости стержневых систем с переменной жесткостью МГЭ показывает, что точность достигается уже при $n \ge 30$ участков. Критические силы по МГЭ определяются из уравнения [4]

$$\left|\mathbf{A}_{*}(F_{\mathrm{kp}})\right| = 0, \tag{4}$$

где $\mathbf{A}_*(F_{\mbox{\tiny KP}})$ — матрица устойчивости для дискретизированного стержня.

Составим данную матрицу в качестве примера для n = 3.

Матрицы начальных и конечных параметров для дискретизированной балки с шарнирным опиранием, где учтены условия опирания и стыковки во внутренних точках, запишутся следующим образом:

•	1	$\upsilon_{(0)}^{0-1} = 0; \varphi_{(\ell)}^{2-3}$		1	$\upsilon_{(\ell)}^{0-1} = \upsilon_{(0)}^{1-2}$																																			
$X_* =$	2	$\phi_{(0)}^{0-1}$		2	$\phi_{(\ell)}^{0-1} = \phi_{(0)}^{1-2}$																																			
	3	$M_{(0)}^{0-1} = 0; Q_{(\ell)}^{2-3}$			3	$M_{(\ell)}^{0-1} = M_{(0)}^{1-2}$																																		
	4	$Q_{(0)}^{0-1}$		4	$Q_{(\ell)}^{0-1} = Q_{(0)}^{1-2}$																																			
	5	$v_{(0)}^{1-2}$		5	$\upsilon_{(\ell)}^{1-2} = \upsilon_{(0)}^{2-3}$																																			
	6	$\phi_{(0)}^{1-2}$; Y =	6	$\phi_{(\ell)}^{1-2} = \phi_{(0)}^{2-3}$	(5)																																		
Λ_* –	7	$M_{(0)}^{1-2}$, Y =	, Y =	, 1 =	, 1 –	, 1 –	7	$M_{(\ell)}^{1-2} = M_{(0)}^{2-3}$. (5)																													
	8	$Q_{(0)}^{1-2}$					8	$Q_{(\ell)}^{1-2} = Q_{(0)}^{2-3}$																																
	9	$v_{(0)}^{2-3}$						9	$\upsilon_{(\ell)}^{2-3}=0$																															
	10	$\phi_{(0)}^{2-3}$																																				10	$\phi_{(\ell)}^{2-3}$	
	11	$M_{(0)}^{2-3}$							11	$M_{(\ell)}^{2-3} = 0$ $Q_{(\ell)}^{2-3}$																														
	12	$Q_{(0)}^{2-3}$			12	$\mathcal{Q}^{2 ext{-}3}_{(\ell)}$																																		

Из матрицы \mathbf{X}_* следует, что в матрице \mathbf{A}_* нужно обнулить 1 и 3 столбцы (равны нулю параметры в 1 и 3 строках). В пустые строки матрицы \mathbf{X}_* переносят независимые конечные

параметры матрицы \mathbf{Y} . Зависимые параметры матрицы \mathbf{Y} переносят в матрицу \mathbf{X}_* по уравнениям их связи (уравнения равновесия и совместности перемещений внутренних граничных точек, см. \mathbf{Y}). В результате этого переноса обнуленная в отдельных столбцах квазидиагональная матрица устойчивости \mathbf{A}_* дополняется компенсирующими элементами, которые находятся строго в определенных местах (i,j), где i— номер строки, в которой находится параметр, j— номер строки, где будет находиться параметр. Например, для переноса угла поворота $\phi^{2-3}_{(\ell)}$ в первую строку матрицы \mathbf{X}_* компенсирующий элемент $\mathbf{A}_*(10,1)=-1$, при переносе $\upsilon^{0-1}_{(\ell)}$ в пятую строку — $\mathbf{A}_*(1,5)=-1$ и т.д. Матрица устойчивости балки примет вид

	1	2	3	4	5	6	7	8	9	10	11	12	_
1		A_{12}		$-A_{14}/EI_1$	-1								
2		A_{22}		$-A_{13}/EI_{1}$		-1							
3		$-A_{32}\cdot EI_1$		A_{12}			-1						
4				1				-1					
5					1	A_{12}	$-A_{13}/EI_2$	$-A_{14}/EI_2$	-1				
$A_*(F_{\rm kp}) = 6$						A_{22}	$-A_{12}/EI_2$	$-A_{13}/EI_2$		-1			(6)
7						$-A_{32}\cdot EI_2$	A_{22}	A_{12}			-1		
8								1				-1	
9									1	A_{12}	$-A_{13}/EI_{3}$	$-A_{14}/EI_3$	
10	-1									A_{22}	$-A_{12}/EI_3$	$-A_{13}/EI_3$	
11										$-A_{32}\cdot EI_3$	A_{22}	A_{12}	
12			-1									1	

Из уравнения (4) методом перебора несложно определяются критические силы, которые представляются в виде

$$F_{\rm kp} = \eta \frac{EI}{\ell^2} \,, \tag{7}$$

где η — коэффициент критической силы (безразмерная величина);

 ℓ — длина балки, м.

Если число участков больше трех, то процедура формирования матрицы \mathbf{A}_* циклически повторяется. Далее представлены решения различных задач устойчивости балок по МГЭ, дано сравнение с известными результатами, полученными путем точного интегрирования дифференциального уравнения (1) [1]. Матрица \mathbf{A}_* формировалась автоматически по программе в среде MATLAB, было принято число участков дискретизации балок n=60. Граничные условия балок в данной методике учитываются номерами обнуленных столбцов и положением в них компенсирующих элементов.

Задача 1. Жесткость балок изменяется по закону

$$EI(x) = EI(a+bx)^{n1}, (8)$$

где a=1; $b=(\sqrt[n]{I_1/I}-1)/\ell$;

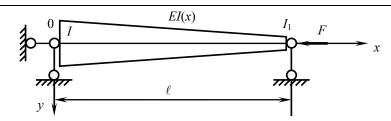
 I_1 — наименьшее значение момента инерции поперечного сечения;

I — наибольший момент инерции.

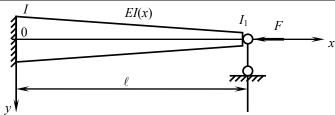
Показатель степени $n_1=1$ соответствует сплошному стержню прямоугольного сечения постоянной высоты, ширина сечения изменяется по линейному закону. Случай $n_1=2$ соответствует пирамидальному стержню, составленному из четырех угловых поясов, соединенных решеткой (или обшитых тонкими листами). Случай $n_1=3$ соответствует стержню прямоугольного сечения постоянной ширины, а высота стержня изменяется по линейному закону. Случай $n_1=4$ соответствует сплошному пирамидальному (коническому) стержню. В табл. 1 приведены значения коэффициента η для определения критической силы по формуле (7).

Таблица 1

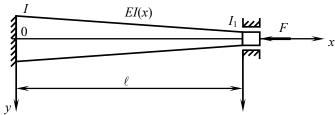
Значения коэффициентов η для балок, состоящих из одного участка



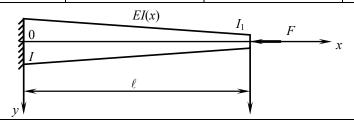
			Показа	атель степен	и <i>n</i> 1 в форм	уле (8)		
$\underline{I_1}$	1	1	2	2		3		4
I	данные [2]	МГЭ	данные [2]	МГЭ	данные [2]	МГЭ	данные [2]	МГЭ
0	3,67	3,66	0,25	0,44		0,008		0,007
0,1	4,67	4,66	3,59	3,58	3,24	3,26	3,12	3,10
0,2	5,41	5,42	4,73	4,72	4,52	4,50	4,41	4,40
0,4	6,78	6,68	6,39	6,38	6,28	6,28	6,24	6,22
0,6	7,78	7,80	7,70	7,70	7,64	7,66	7,64	7,64
0,8	8,85	8,86	8,83	8,84	8,83	8,82	8,83	8,82
1,0	π^2	π^2	π^2	π^2	π^2	π^2	π^2	π^2



I_1		Показатель степени n1 в формуле (8)								
\overline{I}	1	2	3	4						
0	5,29	0,85	0,033	0,0006						
0,1	9,02	7,14	6,59	6,35						
0,2	10,72	9,53	9,17	8,99						
0,4	13,50	12,99	12,83	12,73						
0,6	15,92	15,71	15,65	15,61						
0,8	18,12	18,07	18,05	18,05						
1,0	$(\pi/0,7)^2$	$(\pi/0,7)^2$	$(\pi/0,7)^2$	$(\pi/0,7)^2$						



I_1	Показатель степени n1 в формуле (8)								
\overline{I}	1	2	3	4					
0	9,71	1,30	0,045	0,0012					
0,1	16,70	13,78	12,86	12,42					
0,2	20,42	18,50	17,90	17,58					
0,4	26,18	25,34	25,06	24,90					
0,6	31,06	30,70	30,58	30,54					
0,8	35,42	35,34	35,30	35,30					
1,0	$4\pi^2$	$4\pi^2$	$4\pi^2$	$4\pi^2$					



I_1	Показатель степени n1 в формуле (8)									
Ī	1	2	3	4						
0	0,214	0,0045	$7 \cdot 10^{-5}$	$1,1\cdot 10^{-6}$						
0,1	1,62	1,35	1,25	1,19						
0,2	1,75	1,59	1,53	1,50						
0,4	1,97	1,90	1,88	1,866						
0,6	2,15	2,13	2,12	2,11						
0,8	2,31	2,31	2,31	2,306						
1,0	$\pi^2/4$	$\pi^2/4$	$\pi^2/4$	$\pi^2/4$						

Важным для точности расчетов по предлагаемой методике является выбор абсциссы, при которой нужно вычислять значения EI_i и N_i на каждом участке. Очевидно, что эти абсциссы должны быть таковы, чтобы площадь ступенчатой фигуры была равна площади криволинейной трапеции заданных коэффициентов уравнения (1). При линейном законе изменения коэффициента $x=x_i/2$; где x_i — длина i-го участка балки; при параболическом значении $x=x_i/\sqrt{3}$; при кубической зависимости $x=x_i/\sqrt[3]{4}$; при четвертой степени $x=x_i/\sqrt[4]{5}$; при k-й степени $x=x_i/\sqrt[4]{5}$. Балку можно разбивать на участки разной длины, но удобно дискретизировать ее на участки одинаковой длины, при этом $x_i=\ell/n$.

Задача 2. Балка состоит из двух участков.

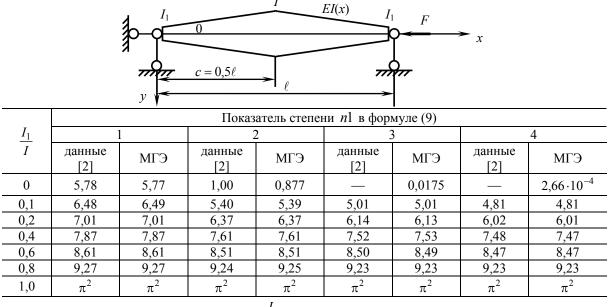
$$EI(x) = EI_1(a_1 + b_1 x)^{n_1} [1 - H(x - c)] + EI(a_2 + b_2 x)^{n_1} H(x - c),$$
(9)

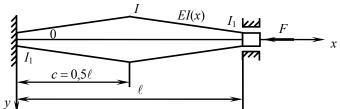
где c — координата конца первого участка;

H(x-c) — единичная функция Хевисайда со сдвигом.

Таблица 2

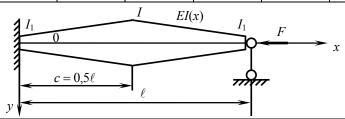
Значения коэффициентов η для балок, состоящих из двух участков



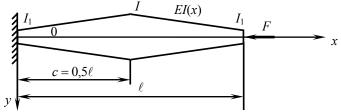


I.		Показатель степени n 1 в формуле (9)										
$\frac{I_1}{I}$	1		2		3		4					
1	данные	МГЭ	данные	МГЭ	данные	МГЭ	данные	МГЭ				

	[2]		[2]		[2]		[2]	
0		10,01		1,97		0,084		0,0024
0,1	_	16,62	14,39	14,42	13,70	13,66	13,30	13,30
0,2	20,35	20,38	18,93	18,94	18,49	18,46	18,23	18,22
0,4	26,16	26,18	25,54	25,34	25,34	25,23	25,23	25,22
0,6	31,03	31,02	30,79	30,78	30,71	30,74	30,68	30,70
0,8	35,42	35,42	35,35	35,34	35,33	35,34	35,32	35,34
1,0	$4\pi^2$							



I_1	Показатель степени n1 в формуле (9)								
\overline{I}	1	2	3	4					
0	7,41	1,71	0,065	0,00103					
0,1	9,93	8,21	7,61	7,31					
0,2	11,51	10,41	10,03	9,85					
0,4	14,05	13,59	13,41	13,33					
0,6	16,25	16,07	16,01	15,99					
0,8	18,29	18,25	18,23	18,21					
1,0	$(\pi/0,7)^2$	$(\pi/0,7)^2$	$(\pi/0,7)^2$	$(\pi/0,7)^2$					



I_1		Показатель степени n1 в формуле (9)									
\overline{I}	1	2	3	4							
0	0,42	0,00896	$1,31\cdot 10^{-4}$	$1.9 \cdot 10^{-6}$							
0,1	0,93	0,76	0,71	0,69							
0,2	1,21	1,09	1,05	1,04							
0,4	1,61	1,55	1,54	1,53							
0,6	1,93	1,91	1,90	1,90							
0,8	2,21	2,21	2,21	2,21							
1,0	$\pi^2/4$	$\pi^2/4$	$\pi^2/4$	$\pi^2/4$							

Задача 3. Балки с непрерывным изменением жесткости под действием распределенной нагрузки. Момент инерции изменяется по закону

$$I(x) = I(1 - x / \ell)^{n_1}, \tag{10}$$

где I — момент инерции в начале координат.

Интенсивность осевой продольной нагрузки следует зависимости

$$q(x) = q(1 - x/\ell)^{k}, (11)$$

где q — интенсивность нагрузки в начале координат.

Нормальная сила тогда определяется по формуле

$$N(x) = \int_{x}^{\ell} q(x)dx = q(1-x)^{k+1} / \ell^{k}(k+1).$$
 (12)

Если интенсивность нагрузки q в сечении x = l, то

$$q(x) = q(x/\ell)^k,$$

$$N(x) = \int_{x}^{\ell} q(x)dx = q(\ell^{k+1} - x^{k+1})/\ell^{k}(k+1).$$
 (13)

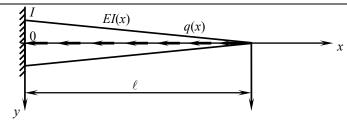
Критическое значение суммарной нагрузки определяется по формуле

$$F_{\kappa p} = \int_{0}^{\ell} q(x)dx = \left(\frac{q\ell}{k_{1}}\right)_{\kappa p} = \eta \frac{EI}{\ell^{2}}, \qquad (14)$$

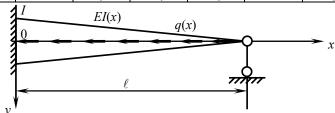
где $k_I = k + I$ — коэффициент, связывающий $F_{\kappa p}$ и $q_{\kappa p}$.

Таблица 3

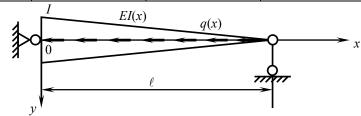
Значения коэффициентов η для балок, у которых изменяются жесткость и нормальная сила



		Показатель степени $n1$ в формуле (10)											
k	()	1		2	2	3	3	4	4			
N	данные [2]	МГЭ	данные [2]	МГЭ	данные [2]	МГЭ	данные [2]	МГЭ	данные [2]	МГЭ			
0	7,87	7,92	5,78	5,85	3,67	3,72		0,39		0,0017			
1	16,1	16,09	13,0	13,01	9,87	9,83	6,59	6,51	_	0,11			
2	27,3	27,42	23,1	23,29	18,9	19,03	14,7	14,65	10,2	10,07			
3	41,3	41,83	36,1	36,62	30,9	31,26	25,7	25,79	20,2	20,19			
4		59,40	52,1	53,06	45,8	46,58	39,5	39,96	33,0	33,28			
5		80,15		72,71	63,6	65,1		57,3		49,43			



k	Показатель степени n1 в формуле (10)									
π	0	1	2	3	4					
0	52,89; 52,64 [1]	28,38	10,50	0,86	0,013					
1	79,00	47,73	23,27	7,40	0,91					
2	104,60	67,40	36,78	16,08	10,08					
3	131,78	89,06	52,91	27,54	20,21					
4	161,55	113,61	72,04	42,07	33,28					
5	194,50	141,23	94,45	59,77	49,48					



k	Показатель степени $n1$ в формуле (10)					
	0	1	2	3	4	
0	18,67; 19,31 [1]	9,57	3,25	0,14	$7 \cdot 10^{-4}$	
1	23,26	12,53	4,59	0,29	0,0034	
2	26,82	14,79	6,52	0,38	0,0023	
3	30,08	16,89	6,60	0,47	0,0012	
4	33,26	18,97	7,61	0,57	0,0035	

5	36,46	21,08	8,63	0,66	0,0041		
		$\frac{I}{0} \qquad EI(x)$	q(x)	w.			
				x			
	v	ℓ		-			
\overline{k}	Показатель степени n1 в формуле (10)						
	0	1	2	3	4		
0	74,60; 74,49 [1]	31,78	11,56	1,17	0,016		
1	107,86	53,24	25,04	8,84	1,66		
2	140,25	74,52	39,22	17,85	10,13		
3	173,34	97,55	55,83	29,69	20,24		
4	208,45	123,12	75,40	44,62	33,35		
5	246,13	151,89	98,18	62,7	49,53		

Из представленных материалов следует, что методика расчета на устойчивость балок с распределенными параметрами, основанная на МГЭ, позволяет весьма эффективно, точно и достоверно решать сложные задачи, не имеющие аналитического решения. Дополнительным преимуществом предлагаемой методики являются минимальные требования к переменным коэффициентам дифференциального уравнения. Они могут иметь разрывы 1-го рода, точки излома и произвольный набор непрерывных функций [5, 6], что существенно расширяет круг решаемых задач не только теории устойчивости, но и других наук.

Литература

- 1. Прочность. Устойчивость. Колебания. Справочник в трех томах / Под ред. И.А. Биргера и Я.Г. Пановко. М.: Машиностроение, 1968. Т. 3. 568 с.
- 2. Справочник по строительной механике корабля: В 3-х т. / Под ред. Ю.А. Шиманского. Л.: Судпромиз, 1958 1960.
- 3. Справочник по строительной механике корабля: В 3-х т. / Под ред. проф. О.М. Палия. Л.: Судостроение, 1982.
- 4. Численные методы в механике / [В.А. Баженов, А.Ф. Дащенко, Л.В. Коломиец, В.Ф. Оробей, Н.Г. Сурьянинов] Одесса: Стандартъ, 2005. 564 с.
- 5. Решение задач сопротивления материалов, теоретической и строительной механики в среде MATLAB / [А.Ф. Дащенко, В.Х. Кириллов, Л.В. Коломиец, В.Ф. Оробей, Н.Г. Сурьянинов] Одесса: Стандартъ, 2009. 552 с.
- 6. Оробей, В.Ф. Метод граничных элементов в задачах устойчивости арок / В.Ф. Оробей, Г.В. Кострова, В.Н. Пурич // Тр. Одес. политехн. ун-та. Одесса, 2009. Вып. 1(31). С. 7 14.

Рецензент д-р техн. наук, проф. Одес. нац. политехн. ун-та Дащенко А.Ф.

Поступила в редакцию 20 апреля 2010 г.