
Праці Одеського політехнічного університету, 2017. Вип. 3(53) ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

КОМП’ЮТЕРНІ Й ІНФОРМАЦІЙНІ МЕРЕЖІ І СИСТЕМИ. АВТОМАТИЗАЦІЯ ВИРОБНИЦТВА

94

DOI: 10.15276/opu.3.53.2017.13

2017 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

UDС 62-529

S.G. Antoshchuk1, DSc, Prof.,
O.M. Maksymov1,
M. Wendl2

1 Odessa National Polytechnic University, 1 Shevchenko Ave., Odessa, Ukraine, 65044; e-mail: m.alex.m11@gmail.com
2 University of applied sciences Erfurt, 25 Altonaer Strasse, Erfurt, Germany, 99085; e-mail: max.wendl@fh-erfurt.de

AUTOPILOT MODEL FOR RETURNING AN UNMANNED

AERIAL VEHICLE TO ITS STARTING POINT IN CASE

OF ELECTROMAGNETIC NOISE
С.Г. Антощук, О.М. Максимов, М. Вендл. Модель автопілоту, що повертає безпілотний літальний апарат в точку старту

при виникненні електромагнітної перешкоди. Розглянуто можливість повернення безпілотного літального апарата при
виникненні електромагнітної завади, що блокує використання глобальної системи позиціонування та радіо керування. Показано,
що в разі збору інформації про місцевість, над якою пролягає маршрут безпілотного літального апарата, за допомогою пасивних
датчиків та камер можливо позиціонування апарату для повернення на місце старту. Проведено аналіз моделей, які дозволили
створити симуляцію процесу польоту та позиціонування.

Ключові слова: автопілот, метод одночасного позиціонування та відтворення карти, комп’ютерний зір

S.G. Antoshchuk, O.M. Maksymov, M. Wendl. Autopilot model for returning an unmanned aerial vehicle to its starting point in
case of electromagnetic noise. The possibility of returning an unmanned aerial vehicle in case of electromagnetic interference, which blocks
the use of the global positioning system and radio control system, is considered. It has been shown that in the situation of gathering
information about the area over which the route of unmanned aerial vehicle runs, using passive sensors and cameras, it is possible to position
the machine to return to the starting point. An analysis of models, which allowed creating a simulation of flight process and positioning,
was made.

Keywords: autopilot, simultaneous localization and mapping, computer vision

Introduction. Unmanned aerial vehicles (hereafter UAV) are very popular in our world. They

are used in all parts of human life be it for taking pictures from perspectives men cannot reach or help-
ing farmers by getting an overview about their land and the status of their plants. Also, they are used
in the army like eyes for artillery. They are not big which makes them hard to notice in the sky and
hard to hit by a machine gun. But there is one simple idea to fight them with: electromagnetic interfer-
ence which aims not only at the radio control system of the drone but also at the video transmitter as
well as at the global positioning system (GPS). GPS facilitates a simple autopilot and some base return
systems. So, in case of using UAV’s for the army like DJI Phantom or others their control and position
can be lost if the enemy is using an electromagnetic noise weapon. The reason for this is that the UAV
becomes “blind” in the air.

We present the idea of a return system that uses only the following passive independent sensors,
camera, accelerometer, gyroscope, magnetometer and barometer (Fig. 1).

Analysis of literary data and formulation of the problem. The basic concept of returning the
drone is using simultaneous localization and mapping (SLAM). When it is flying in the direction of
the goal, a map of distinctive points in pictures provided by the drone camera is created.

Out of this information the real position of the drone in the environment can be identified. This
can be made very accurate if the UAV still has GPS connection at this moment. When the drone loses
the connection, it is able to find its global position with the help of the camera. It is searching for fea-
ture points in the current photo of the camera and calculates its global position out of it. This will be
possible by comparing these points with the global map of distinctive points that was generated at the
beginning when there was still GPS and is being edited and extended the whole time. If there is no
GPS from the beginning, the first picture will define the global context.

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print) Proceedings of Odessa Polytechnic University, Issue 3(53), 2017 ISSN 2223-3814 (online)

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

95

To provide task sharing and fast processing
the idea is to use a Nvidia Jetson TX2 module and
an Arduino Micro at the same time to calculate
the position and send movement controls to the
motors. The Nvidia Jetson is very powerful and
fast for its size. This helps to process the images,
which are received from the camera, quickly as
well as to compute the new movement vectors.
The Arduino does not have such a strong hard-
ware, but it is very small and energy-saving which
is also an important factor when constructing a
drone. The Arduino board will handle the stabili-
zation of the UAV, using proportional-integral-
derivative controllers (PID), as well as interpret
the controls coming from the Nvidia module and
convert them into movement.

Also a PID controller is needed for a point to point autopilot to handle deviation of the flying
route. In order to establish a connection for communication between the Jetson TX2 and Arduino Mi-
cro software is required. Robot Operating System (ROS) is a flexible framework for writing robot
software. It is a collection of tools, libraries, and conventions which attempt to simplify the task of
creating complex and robust robot behavior across a wide variety of robotic platforms. It was deter-
mined that ROS can be used for the communication between the Arduino and the Nvidia Jetson which
makes it possible to fly, take care of the camera and calculate the movement on different places and
devices. This means an improvement in performance and speed of the computation and execution con-
cerning the control of the drone.

Furthermore, something to process and analyze the pictures of the camera was required. Open
Source Computer Vision Library (OpenCV) is a library of algorithms respective the development of
computer vision and machine learning applications. It leans mostly towards real time vision applica-
tions and supports many programming languages as well as platforms. As they are on programming
language side, C++, C, Python, Java and MATLAB and on platform side Windows, Linux, Android
and Mac OS. OpenCV therefore is very flexible which is helping the project in not being limited to
one platform or programming language.

The OpenCV library can be used for camera calibration, feature detection, recognizing faces,
tracking moving objects in series of images, stitching images together, finding similar images, remov-
ing red eyes from images etc. For the purpose of this project the features camera calibration, feature
detection, tracking moving objects and finding similar images are very necessary and helpful.

With all this information a first approach to the topic was made and the first implementation is
following. As the first approach it was decided to make a simulation with the help of Unity 3D simula-
tor to test the concept, of returning a UAV to its starting point without using GPS, in an ideal envi-
ronment, to find out if the plan is functional.

Purpose and objectives of the study
Make it possible to return a drone to its starting point in case of electromagnetic noise disturbing

GPS and radio control by using passive sensors.
To achieve the purpose, the following tasks were identified:
– drone simulator with natural environment;
– point to point autopilot;
– autopilot environment to process data;
– camera model and camera calibration;
– feature points detection and mapping.
Approach and Realization
Drone simulator with natural environment. Previous research in the internet has shown , that

such drone simulations in Unity already exist, but they do not simulate the behavior of each motor on
its own, they are using only the drone center point for movement actions.

1

2

3

4

Fig. 1. Scheme of autopilot idea: starting point (1),

flight with GPS autopilot or manual control (2), point
of getting electromagnetic noise (3), electromagnetic

noise generator (4)

http://pratsi.opu.ua/articles/select/3

Праці Одеського політехнічного університету, 2017. Вип. 3(53) ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

КОМП’ЮТЕРНІ Й ІНФОРМАЦІЙНІ МЕРЕЖІ І СИСТЕМИ. АВТОМАТИЗАЦІЯ ВИРОБНИЦТВА

96

Before implementing the idea in a real
environment, we built a simulation with the
help of the Unity 3D Simulator to under-
stand the problem better and find solutions
for the given problems. With this approach
the problem occurred that the 3D drone
model needs to behave like an actual drone.
Also, the environment needs to have gravita-
tion. However, Unity has a well-designed
and easy to use implementation for this case.
To simulate a bird’s eye camera view the
floor of Unity includes a satellite photo of
Knox County Regional Airport that was
found in the internet in high quality resolu-
tion (Fig. 2).

The drone and its physics are simulated with Nvidia PhysX. Every motor is simulated with a ro-
tatory and vertical force. Our simulation is flying with applying forces to each single motor depending
on the values the PID controller returns after it processed the input controls for movement. On Fig. 3
the double contoured PID controllers for pitch, yaw and roll can be found.

PID

Angle layer
y0(grad) e(grad/s)

PID

Angular
velocity

layer

e(grad) y0(grad/s) Motorpower u(t)
Drone

Fig. 3. Scheme of PID controllers of angle controlling

These three axes include six PID controllers. For height controlling the following contour is
used (Fig. 4).

PID

Height position
layer

y0(meters) e(meters/s)

PID
Height position layer

e(meters) y0(meters/s)

PID
Height speed

layer

PID
Height

accelaration layer

Motorpower u(t)
Drone

e(meters/s2) y0(meters/s2)

Fig. 4. Scheme of PID controller of height controlling

Altogether the drone stabilization uses nine PID controllers. The coefficients of them are shown
in the Table 1.

After receiving all values from the bottom layer regulators, they are added or subtracted to each
motor respecting the location of the drone. The initial power of the drone is height acceleration lay-
er control.

Then each motor calculates vertical trust and relative torque depending on RPM (rotations per
minute). RPM depend linearly on the power, the trust is quadratic dependent on RPM and torque is
linearly dependent also on RPM.

Fig. 2. Screenshot of Unity Drone simulator

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print) Proceedings of Odessa Polytechnic University, Issue 3(53), 2017 ISSN 2223-3814 (online)

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

97

Table 1
Coefficients of PID controllers used to stabilize drone in Unity Drone simulator

Name of PID controller K-Proportional K-Derivative K-Integral
Pitch angular velocity layer 0.01 10 0.00000001

Pitch angle layer 0.1 0 0
Pitch angular velocity layer 0.01 10 0.00000001

Pitch angle layer 0.1 0 0
Yaw angular velocity layer 0.1 200 0.0

Yaw angle layer 0.1 0 0
Height acceleration layer 0.01 1 0.00001

Height speed layer 0.3 10 0.000001
Height position layer 0.1 10 0.000000001

Point to point autopilot. The class of point to point (hereafter PtP) autopilot is needed for the

simple control of the drone like moving from A to B. It works according to the following steps:
1) Current position with time of position measuring. If it is time of position processing, not

measuring, it won’t work, because of wrong first and second derivative of position – speed and accel-
eration. ROS provided callback functions, when new position is arrived, but not provided time, when
it was sent. The time of measuring is also sent with the vector of the position.

2) The destination position is also saved in a ROS topic. This is the result of a main program
thread that calculates where it must fly.

In order to get the controls that would be sent to the drone (in our case via ROS-bridge to the
Unity drone simulator) from that two points it uses another PID controller’s contours (Fig. 5) which
works with X (left and right movement) and Z (forward and backward movement) axis.

PID

Horizontal position
layer

x0(meters) e(meters/s)

PID
Horizontal position

layer

e(meters) x0(meters/s)

PID
Horizontal speed

layer

PID
Horizontalaccelara

tion layer

Motorpower u(t)
Drone
Unity
Drone

simulator

e(meters/s2) x0(meters/s2)

Fig. 5. Scheme of PID controllers of PtP autopilot

When the destination position is changed all PID controllers will be reset. However, this way on-
ly X and Z axis are controlled. The Y coordinate of destination point is sent directly to the controls qua-
ternion of the drone. All coefficients of these controllers are received through single-handedly trial and
error principle for each layer separately. The main goals to achieve were: speed of feedback and no
rocking of the system. The discovered coefficients can be found in Table 2.

Table 2
Coefficients of PID controllers used to provide stable flight with PtP autopilot

Name of PID controller K-Proportional K-Derivative K-Integral
Z acceleration layer 0.01 1 0.00001

Z speed layer 0.3 10 0.000001
Z position layer 0.1 10 0.000000001

X acceleration layer 0.01 1 0.00001
X speed layer 0.3 10 0.000001

X position layer 0.1 10 0.000000001

http://pratsi.opu.ua/articles/select/3

Праці Одеського політехнічного університету, 2017. Вип. 3(53) ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

КОМП’ЮТЕРНІ Й ІНФОРМАЦІЙНІ МЕРЕЖІ І СИСТЕМИ. АВТОМАТИЗАЦІЯ ВИРОБНИЦТВА

98

Autopilot environment. Now the side of the ROS environment needs to be set up. There is an
existing ROS library called ROS bridge with the help of which it is possible to communicate between
ROS and non-ROS programs. In our case it will be the Unity simulator. We found a C# library for
ROS bridge which made it possible to send data from the drone, e. g. pictures of the camera to ROS
and backwards.

It was decided to use ROS framework based on Python because Python is easy to use and very
powerful. Also with the help of OpenCV it is possible to analyze and process images. A list of topics
through which Unity and ROS can communicate was developed and is presented in Table 3.

Table 3

ROS topics, their data types and relations between drone and ROS environment

Name Datatype Drone ROS
/drone/status/drone UInt8 publish subscribe

/drone/status/ros UInt8 subscribe publish
/drone/camera/1 sensor_msgs/CompressedImage publish subscribe

/drone/camera/calibration sensor_msgs/CompressedImage publish subscribe
/drone/camera/undistort sensor_msgs/CompressedImage – publish/subscribe

/drone/barometer std_msgs/UInt32 publish subscribe
/drone/rotation geometry_msgs/Vector3 publish subscribe
/drone/position geometry_msgs/Vector3 publish subscribe

/drone/position/destination geometry_msgs/Vector3 – publish/subscribe
/drone/control geometry_msgs/Quaternion subscribe publish

Camera model and camera calibration. If there is feature detection and a global map of feature

points is created it will be necessary to always have the map in scale of the real world. In case the
drone still has GPS connection new feature points can easily be added to the map because the map and

the real world have the same scale and the position
of the UAV is known. When the GPS signal is lost
the exact position of it in the world can be detected
by finding its position in the map of feature points.
This can be achieved by using the latest picture the
camera sent, comparing the feature points of it with
the global map and estimating the difference be-
tween the positions of the points. To get global po-
sition of feature point, pinhole camera [1, 2] was
used (Fig. 6).

The equation i
i o

o

DL L
D

= ⋅ de-scribes the relationship between the size of the object in real life

and the size of the object in the image. For the drone this view is rotated 90° around the z-axis and Di
becomes the flight height of the drone, Do represents the focal length of the camera. Since cameras in
Unity do not support a focal length, the values of IMX219, a suitable camera for Arduino Micro and
therefore a possible model for a real implementation, were used to ge-nerate the camera model.

Lo describes the distance of the object from the center of the picture which describes the position

the drone is at and if the equation is converted to i
i o

o

DL L
D

= ⋅ the distance of the desired object in the

real environment can be calculated.For mapping the feature points to real world objects and always
having a map in scale to the real world this process is very necessary.

The pictures received from the camera also need to be normalized, which means every picture
needs to have identical quality. Due to the fact that there will be geometric distortion [4] (Fig. 7, a) and
blurring in a camera picture, camera calibration [5] is necessary. It will straighten the edges in the pic-
ture and adjust the focal point of the camera virtually since it cannot be changed in a real pinhole cam-

Lo

Do

Di

Li

Fig. 6. Scheme of pinhole camera

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print) Proceedings of Odessa Polytechnic University, Issue 3(53), 2017 ISSN 2223-3814 (online)

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

99

era. With the help of a chessboard and OpenCV this can be realized in Python. The algorithm finds the
edges of the chessboard in a random picture. It needs to be defined how many rows and columns the
board has. After this process a new camera matrix is returned which will be saved and used on every
picture ROS receives from the drone in the future (Fig. 7, b).

 а b

Fig. 7. Raw image from camera (a), undistorted image after camera calibration (b)

Feature detection and mapping. Now that every picture is flattened feature detection is possi-
ble. In general, a feature point is an “interesting” part of a picture. Normally they are described
through edges, corners or blobs in a picture. There are many different algorithms which all use differ-
ent criteria for feature detection. Many of them are provided by OpenCV. To decide, what algorithm
will be used, tests were done. The tests were conducted with images of the size 512×512 pixels on av-
erage computer quality. The Table 4 shows: speed per frame – absolute total time in milliseconds
spent on feature detection of a single frame; percent of tracked features – percent of successfully
tracked features from original to transformed image. In an ideal situation, the value of this indicator
should be near 100 %; average tracking error – average distance between the position of a tracked fea-
ture and the calculated position on a transformed frame. This indicator shows the accuracy of the fea-
ture detection. Large values indicate large numbers of false positive tracking or “drift” of feature
points among frames. In each row with bold the four best results are selected. The winners in this
competition are the FAST and the ORB algorithm. The problem of the FAST algorithm is that there
will be returned a lot of feature points which also need to be processed.

Table 4

Comparison of feature detection algorithms provided by OpenCV

Name of values FAST GFTT SIFT SURF MSER STAR ORB
Average number of detected keypoints 7807 577 1230 1153 230 173 692

Percent of tracked features 95.96 94.17 93.9 98.6 93.45 99.9 99.7
Average detection time in ms 13.8 32.2 502.9 364.4 117.3 27.6 25.3

Average feature point drift in pixels 0.144 0.812 0.2312 0.31 0.6875 0.826 0.0187

It was decided to use the Oriented FAST and Rotated BRIEF (ORB) [6] – algorithm because it
had the best result from our point of view. A problem occurred, that there were lots of feature points in
one picture which led to exponential growth of the processing time (Fig. 8). In order to not get massive
amounts of features from every picture an algorithm, to sort out feature points which are very close to
each other and only save one of them to the feature point list, was created.

Since feature points are unique the approach to create a three-dimensional map out of feature
points was being established. On programming side this could be achieved through a three-
dimensional array. The first and the second dimension can represent our map like a 2D coordinate sys-
tem; for example, every index of it could be 10 meters in x and in y direction. The third dimension
represents the array of feature points for every index in x and y direction.

http://pratsi.opu.ua/articles/select/3

Праці Одеського політехнічного університету, 2017. Вип. 3(53) ISSN 2076-2429 (print)
ISSN 2223-3814 (online)

КОМП’ЮТЕРНІ Й ІНФОРМАЦІЙНІ МЕРЕЖІ І СИСТЕМИ. АВТОМАТИЗАЦІЯ ВИРОБНИЦТВА

100

Fig. 8. Feature detection with ORB algorithm. Feature matching of two images

Conclusion. As a result of the conducted studies it can be noted that creating a flight route on
behalf of pictures and tracking the movement of a UAV as well as let it return home on its own, in
theory and in an ideal environment, is possible. It was accomplished that a drone simulation environ-
ment was created which possesses gravity and offers a drone model. That model behaves like a real
drone because it has independent motors with their own rotatory and vertical forces as well as several
PID controllers for stabilization. A point to point autopilot provides simple movement from point A to
point B, which is also realized through PID controllers. For the values the autopilot processes a ROS
environment was created including a communication between Unity/C# and Python as well as good
structured topics to exchange data. Furthermore a camera model including camera calibration has been
created to provide a stable quality of pictures and also the length of pixels in real world scale. As the
last point feature detection was established, to be able to locate the drone in a global context analyzing
the difference between the position of feature points in subsequent pictures. This also includes creating
a map of feature points which represents the route the drone is flying and makes it possible to always
track the position on the way back.

Since all these features are working, the next task will be to create an interface to steer the drone
manually. Using the map of feature points, an algorithm to allow the drone return to its starting point
by itself needs to be built. After this first attempts to use a real drone can be made.

Література

1. Chris Patton. Photography Without Lenses. 2007. 39 p. URL: http://pinhole.stanford.edu/ imag-
es/cpbeyond.pdf (Last accessed 03.09.2017).

2. Camera Models and Fundamental Concepts Used in Geometric Computer Vision / Sturm P. et al. 2011.
187 p. URL: http://www.merl.com/publications/docs/TR2011-069.pdf (Last accessed 02.09.2017).

3. Wilhelm Burger. Zhang’s Camera Calibration Algorithm:In-Depth Tutorial and Implementation. Tech-
nical Report HGB16-05 16th May, 2016. 2016. 55 p. URL: https://www.researchgate.net/ publica-
tion/303233579 (Last accessed 03.09.2017).

4. Juyang Weng, Paul Cohen, Marc Herniou (1992). Camera Calibration with Distortion Models and Ac-
curacy Evaluation Distortion. IEEE TRANSACTIONS ON PAmRN ANALYSIS AND MACHINE INTEL-
LIGENCE. Vol. 14, №10. 1992. P. 965–980. URL: https://www.cs.auckland.ac.nz/courses/ comp-
sci773s1c/lectures/camera%20distortion.pdf (Last accessed 07.09.2017).

5. Oskarsson M. Two-View Orthographic Epipolar Geometry: Minimal and Optimal Solvers. J Math
Imaging Vis. 2017. P. 1–11 DOI: 10.1007/s10851-017-0753-1 (Last accessed 05.09.2017).

http://pratsi.opu.ua/articles/select/3

ISSN 2076-2429 (print) Proceedings of Odessa Polytechnic University, Issue 3(53), 2017 ISSN 2223-3814 (online)

COMPUTER AND INFORMATION NETWORKS AND SYSTEMS. MANUFACTURING AUTOMATION

101

6. Ethan Rublee, Vincent Rabaud, Kurt Konolige, Gary Bradski. ORB: an efficient alternative to SIFT or
SURF. Willow Garage, Menlo Park, California. URL: http://www.willowgarage.com/sites/ de-
fault/files/orb_final.pdf (Last accessed 02.09.2017).

References

1. Chris, Patton. (2007). Photography Without Lenses. Retrieved from: http://pinhole.stanford.edu/ imag-
es/cpbeyond.pdf

2. Sturm, P., Ramalingam, S., Tardif, J-P., Gasparini, S., & Barreto, J. (2011). Camera Models and Fun-
damental Concepts Used in Geometric Computer Vision. Retrieved from: http://www.merl.com/ publi-
cations/docs/TR2011-069.pdf

3. Wilhelm Burger. (2016). Zhang’s Camera Calibration Algorithm: In-Depth Tutorial and Implementa-
tion. Retrieved from: https://www.researchgate.net/publication/303233579

4. Juyang Weng, Paul Cohen, & Marc Herniou. (1992). Camera Calibration with Distortion Models and
Accuracy Evaluation Distortion. IEEE TRANSACTIONS ON PAmRN ANALYSIS AND MACHINE IN-
TELLIGENCE, 14, 10, 965–980. Retrieved from: https://www.cs.auckland.ac.nz/courses/ comp-
sci773s1c/lectures/camera%20distortion.pdf

5. Oskarsson, M. (2017). Two-View Orthographic Epipolar Geometry: Minimal and Optimal Solvers.
J Math Imaging Vis, 1–11. Retrieved from: https://doi.org/10.1007/s10851-017-0753-1

6. Ethan Rublee, Vincent Rabaud, Kurt Konolige, & Gary Bradski. ORB: an efficient alternative to SIFT
or SURF. Willow Garage, Menlo Park, California. Retrieved from: http://www.willowgarage.com/
sites/default/files/orb_final.pdf

Received September 12, 2017

Accepted October 02, 2017

http://pratsi.opu.ua/articles/select/3

