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TEMPERATURE MODELS FOR GRINDING SYSTEM STATE MONITORING

Annotation. The grinding temperature limits the productivity of this operation and is an important parameter for assessing the
state of the grinding system. However, there is no information about the current grinding temperature in the existing computer sys-
tems for monitoring and process diagnostics on CNC grinding machines. This is due to the difficulty of measuring this parameter
directly or indirectly. In the first case — difficulty with the installation of temperature sensors, in the second — there are no acceptable
mathematical models for determining the grinding temperature. The objective of the study is development of a simpler temperature
model which is acceptable for the modern grinding with large values of the workpiece velocity relative to the grinding wheel. To
reach the study objective a classification of solutions of three-, two-, and one-dimensional differential equations of heat conduction
with the same initial and boundary conditions was made to research the grinding temperatures with the help of these solutions under
otherwise equal conditions. The conditions of results close agreement of the solutions are established depending on the geometrical
configuration of the contact zone between the grinding wheel and the workpiece: H / L <1 and H >4, where H and L are half
width and half length of the contact zone, respectively. The above three solutions of differential heat conduction equations obtained
under boundary conditions of the second kind and were converted to a uniform dimensionless form, in which the dimensionless tem-
perature depends on the coordinate and dimensionless time multiplicity of the Peclet number, which characterizes this time, the di-
mensionless half and velocity of the moving heat source. A comparative analysis of surface and deep temperatures was performed for
the above three solutions depending on the Peclet number. The possibility of determining the grinding temperature on modern high-
speed CNC machines with a one-dimensional solution with H > 4 on the basis of computer subsystems of designing, monitoring and

diagnosing of grinding operations is shown.

Keywords: Grinding temperature; thermal models; dimensionless temperature; moving heat source; temperature distribution;

heat source shape; Peclet number

Introduction

Grinding temperature mathematic models need
for the designing, monitoring and diagnosing the
grinding operation to boost the operation throughput.
This is fully relevant, for example, for CNC gear
grinding machines. Once this problem is solved, it
becomes possible to develop appropriate computer
subsystems to optimize and control the grinding op-
eration on CNC machines at the stages of production
and its preparation. The urgency of solving this
problem is confirmed by the large number of rele-
vant publications.

The temperature in the grinding zone is one of
the main factors limiting the performance of grind-
ing [1-3]. To optimize a grinding process and boost
its productivity, it is necessary to have true infor-
mation about the grinding temperature which can be
obtained by the methods observed in the literature.
There are many works which are devoted to the
study of thermal phenomena in grinding. In terms of
applied research methods the analyzed literary refer-
ences can be divided into the following groups: the-
oretical methods [4-7]; the theoretical ones with ex-
perimental verification [8-10]; theoretical ones with
computer simulation of the temperature field [11-13];
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computer simulation ones with experimental testing
[13-18]; the only computer simulation ones [19-21].

The review shows that there is no information
about the current grinding temperature in the exist-
ing computer systems for monitoring and process
diagnostics on CNC grinding machines. This is due
to the difficulty of measuring this parameter directly
or indirectly.

The state of the problem in the field of the
grinding thermophysical theory can be considered
taking into account the following philosophical
technical concepts that predetermine the correspond-
ing particular approaches to the solution of the cor-
responding problems. Firstly, it is the concept of dry
and wet grinding, which predetermines the absence
or accounting of convective heat transfer under the
action of grinding fluid. Secondly, it is the concept
of macro- and micro-grinding, which allows consid-
ering integral (due to averaging) or local heat fluxes
with and without taking into account the effect on
temperature of instantaneous cutting elements — sec-
tions of abrasive grains separated by pores of the
grinding wheel (highly porous grinding wheels) as
well as their accidental impact on the surface being
ground. This concept involves the separation of the
grinding process into categories of continuous and
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discontinuous (with pulsed heat flux), including the
grinding with and without convective heat transfer.
Thirdly, the concept of super-micro-grinding, which
involves taking into account the effect of individual
cutting grains of the grinding wheel, with and with-
out taking into account convective heat transfer. The
first concept most closely corresponds to the theory
of the Jaeger moving heat source [22; 23], on the
basis of which simplified formulas for determining
the maximum grinding temperature are given in a
number of sources without corresponding justifica-
tions [4; 6; 24-26].

In this connection the objective of the study is
to develop a simpler temperature model which is
acceptable for the modern CNC grinding machines
with large values of the workpiece velocity relative
to the grinding wheel. In turn, the following tasks
rises about the temperature solutions classification,
their converting into unique dimensionless form and
finding the conditions to simplify the solutions.

Classification, Selection and Analysis of
Grinding Temperature Models

The grinding temperature determination on the
basis of moving strip source mathematical model
with the restriction of the source along the Y axis
(Fig. 1, a) is a complex task of mathematical ther-
mophysics. The task solution is obtained by H.S.
Carslaw and J.C. Jaeger [22] for an abstract infinite
solid with moving heat strip source on it when the
initial temperature of the solid is equal to zero and at
a constant of the heat flux density gin the contact

zone surface. This solution [22] in our notation has
the form
ga

T
xZ}H exp(u)KO (\/X2 +u2 )du,
Z°H

where: a and A are the thermal diffusivity in m%/s
and thermal conductivity in W/(m-K) of the work-
piece material; V is the heat source velocity, m/s;
X, Z are dimensionless (relative) coordinates

which correspond to dimensional coordinates X,z
inm; H is the dimensionless heat source half-width
which correspond to the dimensional half-width hin

m; K, (s) stands for the zeroth-order modified Bes-

sel function of the second kind.
In equation (1) the following designations are used:

X=V—X; Z=V—Z;H=ﬂ.
2a 2a 2a

It is noted in [22] that for large values of H the
maximum temperature occurs near Z=H and is

approximately gh/ A~/wH which is the value found

Tos(ZXH)= X

(1)

for the one-dimensional solution at the end of time
2h /V for heat supply at the rate of g over a plane in
the infinite solid.

The temperature in a semi-infinitive solid
(Fig. 1, a) is just twice the value (1), i.e.
20a

Typ(Z X H)=

X

)

T
xZ}H exp(u) Ko (\/X2+u2jdu.

Z-H

4z

[
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Fig. 1. Strip (a) and rectangular (b) moving heat
sources in a semi-infinitive solid with a sufficiently

large size X,

Another problem is the study of the close
agreement of three- and two-dimensional solutions
of differential equations of heat conduction obtained
in [22] under the same second-kind boundary condi-
tions that most closely correspond to the dry grind-
ing process.

The determination of temperature on the basis
of the moving strip source mathematical model with
the restriction of this source along theY axis (Fig. 1,
b) is a complex task of mathematical thermophysics.
The solution of this problem for the temperature de-
termination at a uniform heat fluxq and for the

same initial and boundary conditions has the follow-
ing form [22; 23].
20a

v
xojoexp X—2 (erf (u]-erf (gnx
o | 2u Jau Vau ©)

(e

T, (XY.ZLH)=
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where: 'Y is dimensionless (relative) coordinate
which correspond to dimensional coordinate y; L is
the dimensionless heat source half-length, which cor-
respond to the same dimensional parameter | in m.

V(z-7
Here it isassumedthat:&zﬁ,L:V—I,
2a 2a
-h<z<h, -I<y<l. In formula (3)

2 ¢ 2 :
erf(s)=—|exp(-§°)dg is the well-known
~Jon()
Gauss error special function.

Transforming the Two- and One-
dimensional Solutions

To bring the equation (2) into the coordinate
system of the equation (3) it is necessary to change
the integration variable U=-§ in the equation (2)

and replace the sign both in integration limits and in
variable Z . As a result it is obtained the equation as
in works [4; 23; 26; 27], i.e. in the form

2
Tyo(Z X, H) = n;‘j x
(4)
Z+H
< [ exp(-€)Kq (\/X2+§2)d2§.
Z-H

For the one-dimensional solution the temperature in
the semi-infinitive solid at any point of X at the time
¢ for unlimited (Fig. 2, a) and limited end face area
(Fig. 2, b) has the form [22]

2 \/;, X
Tip(x1)= qk 1erfc(2\/;j. (5)
2q+/ar . [ X
ierfc
A 2vart

Tp(x1)=

The time <tin the first equation of the system
(7) is ended at t=1, . During this time, a heat

source is moving relative to a fixed point P of the
surface (Fig. 3, a). Determination of the temperature
in the next time interval T, <t <oomust be made
according to the second equation of the system (7).
This can be explained by superposition of two solu-
tions of the same type, one of which (the second) has

a time offset Tt relative to the first solution
(Fig. 3, b).

1
where: ierfcu = —exp(-uz)- u-erfcu.

Jn

=

XY (a) -\'* (b)

Fig. 2. Unmoving flat heat source acting fixed
time 7= 2h/V onto a semi-infinite solid with
unlimited (a) and limited (b) end faces 1 and 2,

respectively (the second kind boundary conditions
occur in shaded areas)

The surface temperature, i.e. at X=20, is given

by [22]
& ©6)
T

The grinding temperature from the impact of a
short in time heat flux pulse having the duration 7,
(heating time) is described by two equations. The
first equation of the two is for the heating time inter-
val of 0<t <1, , and the second is for another time

max
T
1D

2q
A

interval of 1., <1 <00, i.e. after the heating time is
over [22]. Thus,

],if 0<t<1y;

T. (xr)ZM \/;ierfc(i]-«/r—t jerfe| ——2 |Lif 1, <7< v
o A 2Jat 4 2a(t-1,) )| "o '

Using the designations adopted above i.e. at
4aB 4aH
X:V_X, H:ﬁ, _a2 , _3.2
2a 2a \Y Vv
because of t=2b/V , 0<2b<2h (Fig. 1, a) and
1=2h/V , the equation (5) takes the form

T= and Tty =

Tip(X.B) = %\/E ierfc (Lj (8)

2B
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Moving strip source

Unmoving coordinate svstem(x, v, 2)
Unmoving point 2
»  Fgit) . MV c=2b/V

(| #

T, . T
" H q
(1 B i
}

L

1 03 T
() ' '<_||'|::'Thr:|

Fig. 3. Moving strip source in the (X,Y, z) un-
moving coordinate system referenced to the solid (a)
and replacing the heat flux pulse +q(z) by superpo-
sition of two single-type solutions with heat flux+q

and -q(t-ty ) (b)

Thus, at 2b=2hwe getB=H , i.e. the current
value B at fixed value H in the intervals B < H and
B > H are the dimensionless time in the one-
dimensional solution (8). For the current time
t=2h/V from the (5) as well as from the (8) we
have the one-dimensional solution maximum tem-
perature according to the equation (6).

Therefore, we conclude that in [22] the follow-
ing mathematical idea was proposed

H -0 X=0 2D | X=0 1D | X=0
2 [ ©
AN

If this is so, then a scientific hypothesis arises
about the close agreement of the calculation results
of the two- and one-dimensional solutions (2) and
(8), if the latter will be transforming to the system
(7). In addition, a similar results close agreement
problem must be considered for the three- and two-
dimensional solutions (3) and (4).

Putting the Solutions in one Coordinate
System

Dividing both parts of equations (3), (4) and (8)
by the factor of 2ga/ m\V , we obtain the follow-
ing three-,two- and one-dimensional solutions in a
dimensionless form, respectively, in the intervals of
-20H < Z <+5H for the equations (3), (4) and of
-20H < B <+5H for the equation (8).

Three-dimensional solution in the space interval
of -20H < Z <+5H:

O (XVZ L H) = \/gz exp[%}[erf(%) - [%ﬂ y

()

N

(10)
L du.

Two-dimensional solution in the space interval of -20H <Z <+5H :

Z+H

0 =0(XZH)= | exp(-é)Ko(«/X2+§2)d§.

Z-H

One-dimensional solution in the time inter-
val of B <H [28, 29]:

0,5 =0(X,B)= 27rx/§ierfc(

X] 12
7B ) (12)

(11)

Now for the equations (10), (11) and (12) the
intervals of change in the dimensionless spatial co-
ordinate Z , which measured in units of the dimen-
sionless half-width of the moving heat source (the
Peclet number) for equations (3) and (4),coincide
with the corresponding intervals of change in the
dimensionless time coordinate B for the equation (8).

By analogy with equation (7) the dimensionless
grinding temperature from the impact of a short
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pulse of heat flux having duration t,, is described
by the two interconnected equations. The first equa-

0, =0(X,H)=2n/B ferfe—if

e

@, =0(X,H)= 27:[@ jerfe—— —/BLH ierfec

7

Moreover, the fixed value H in equations (10)
2

and (11) corresponds to the fixed value H = \4/1_TH
a

2
in equation (13). That is, the H :\A/l_TH in equa-
a

tion (13) is the dimensionless half-width of the heat
source, which characterizes the interval of the di-
mensionless time of the heat source action at the
heating stage.

To ensure the comparability of solutions (10),
(11) and (13) along the abscissa axis, they must be
converted to represent in the same coordinate sys-
tem, which is moving for the equations (10) and (11)
(MCS in Fig. 4) with speedV , while for the equa-
tion (13) this coordinate system is unmoving (UCS
in Fig. 4).

To do this, it is necessary to fulfill two condi-
tions. Firstly, that the starting and ending points of
the heating correspond to the spatial coordinates
Z=+HandZ =-H for the three- and two-
dimensional solutions (10) and (11). Secondly, the
distance along the coordinate Z between these
points in the moving coordinate system, i.e. the dis-
tance AZ = 2H , corresponded to the dimensionless
heating time A (it corresponds to the dimensional

time ofty =2h/V’) in the unmoving coordinate

system. For this, the equation (13) must be subjected
to the following three transformations: (1) introduce
a new variable H'=H /2 (or2H’=H ) along the
abscissa axis; (2) position the region of variation of
the argument along the abscissa axis on its negative
semi-axis (Fig. 4, b); (3) shift the abscissa of the en-
tire dependence by the value H'=H / 2 to the left
(in Fig. 4 it is not shown) so that the zero coordinate
on the abscissa axis for the equations (10); (11) and
(13) coincides with the zero coordinate on the ab-
scissa axis for the equation (13).

tion of the two is for the time interval of heating
0< B < H, and the second is for another time

interval H <B <o (e.g.-20H <B<+5H), i.e.

0<B<H;

(13)
j, if H<B<w.

—

2h

MCS Iyp Mip

-h = | o

o

[ T
IH g =- H

Fig. 4. Ensuring comparability of moving (MCS)
and unmoving (UCS) coordinate systems for
determining grinding temperature using dimensional
(a) and dimensionless (b) parameters

After these three transformations, equation (13)
takes the following form:
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-2n./H (0.5(B-H)-1) ierfc

, if -H<B<ZO0;

(14)

X y, 1f -20H <B<-H.

J

Now in equations (10), (11) and (14), the pa-
rameter H is the dimensionless Peclet number [4,
7]. Moreover, in equations (10) and (11) the parame-
ter H characterizes the dimensionless spatial coor-
dinate Z while in equation (14) — the time dimen-
sionless coordinate B |

Next, in equations (10) and (11) we introduce a
variable f =Z / H , and in equation (14) — a varia-

blef=B/H.

2./H(0.5(B-H)-1)"

\zl'his provides the same presentation format of
these three equations, in which the abscissa axis for
equations (10), (11) and (14) is represented in the
values of the same variable f which is multiple to
the Peclet number H .In this case, equations (10),
(11) and (14) take the following form.

Three-dimensional solution in the space interval
of -20< f <+5, wheref=Z/H:

of/H
X Y+L Y-L
O.- (XY,LLHf)=H, |~ 2 Herf| 2= |- orf| ——=
o ) 32 ! exp(ZHfHer (WJ - (WJ}X

1

o erf Z+H+Hf erf Z-H+Hf
\J2Hf \J2Hf

Two-dimensional solution in the space interval
of-20< f <+5, where f=Z/H:
f+1

O =O(X,H, F)=H [ exp(-aH)K, («/XZ +(aH)? )da.
f-1

where: o is a new integration variable.

X
Ol = 0"(X,H, 1) =2nJ0.5H[f - 1] ferfe—————
fo =0"(X R, f) =2m 0.3 |lerC2,/0.5H|f-1|

df
TAr

(16)

One-dimensional solution in the time intervals
of -1<f<+1 and -20<f<-1 where

f=H/H,:

! [ . X .
@, =0'(X,H, f)=2n,/o.5H|f -1 lerch, if -1<f <+1;

A7)

X

—2m\JH(0.5]f -1]-1) ferfc

Exploring the Difference between Three- and
Two-dimensional Solutions

To explore a grinding scheme let’s change the
source velocity at a fixed half-width of the source
2H . For example, for profile gear grinding scheme

with h=272 .10 m (h=,/Dt, / 2; t,= 0.074

-20< f <-1.

2\JH(05|f -1-1)

-10° m; D=0.4 m) at the rear edge Z =-H on the
surface X =0, y/1=0...1/5, and a=5.683-10"°m"/s
it is selected three forms of contact spots: the rectan-
gular elongated along the axis QY ; the square; the
rectangular elongated along the axis 0Z . To provide
these forms, the length / of the source was chosen as
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follows: 1=11-10°m (H / L=0.2474; Fig. 5, a); |
=3,469-10°m (H / L= 0.7847; Fig. 5, b); 1= 1.10°
*m (H / L=2.7235; Fig. 5, c).

ey | T['

|
2:’{'__ ”o——-}
' E £=-H
- 2L - L)
H/ L=02474

H /L=<l
=272 s

I=11 nmi

]
0 ¥ ol |r
25| -4----- = 21| --f-O—=

Z =\-H v | £=-H
T 2 .
o 2L _| (b) 2L | (@)
H / L=0.7847 H /L=27235
H/ L=l H L=l
f1=2.72 v N1=2.72 mm
1=3.47 s =1 s

Fig. 5. Three configurations of rectangular
sources for research

The choice of these three H / L. relations ob-
tained by changing lat h=const =2.72 mm is due
to the need for a characteristic change in the shape
of a rectangular source, namely: H / L=0.2474 <1
(Fig. 5,a); H/ L=0.7847=1 (Fig. 5,b)and H / L
= 2.7235>1 (Fig. 5, c¢). Dimensionless parameters
Hand L is changed due to discrete change in the
velocity of the source in the range of grinding
modes: V = 0.2 m/min (0.0033 m/s), V =0.5 m/min
(0.0083 m/s); V=1 m/min (0.017 m/s); V = 2
m/min (0.033 m/s); V =4 m/min (0.067 m/s); V =5
m/min (0.083 m/s); V =7 m/min (0.117 m/s); V =
10 m/min (0.167 m/s); V = 12 m/min (0.2 m/s).

As an example, it is calculated the profile gear
grinding temperature on the surface by the equation

(10) multiplied by the % with the following ini-
AY

tial data: q=22,7-10° W/m?;a=5.683-10° m?/s; A
=24 W/(m-°C); V =0.2 m/s (12 m/min); z=0; h
=2.72:10° m (D=0.4 m; t,=0.074-10° m);

| =3.469-10° m;-5H < Z <5H ; X =0 (on the sur-
face); H =47,869; L =61. The coordinates along the
_yaxis are the following: y=0, i.e.Y =0; y=1//2,
i.e.Y=8.799;y=31/4,ie Y=13.198; y=71/8,
i.e. Y=15.397; y=/, i.e. Y=17.597. The maxi-

mum temperatures are located about at the back
edge of the moving heat source, i.g. at Z =-0,95H
(Fig. 6).

An idea of the result close agreement of three-,
two-, and one-dimensional solutions is to determine
the conditions under which the calculation by any of
these equations yields very close results, e.g. with
the difference which is less than 5 %. That is why,
under these conditions it becomes possible to use the
simpler one-dimensional solution instead of three-
and two-dimensional ones. In order to show the con-
gruent continuity of equations (10) and (11), it is
performed the study of the temperature field along
the heat source length in the direction of the QY axis
by the equation (10). To make the study more gen-
eral, it is executed in dimensionless form using
equations (10) and (11). To fit the actual grinding
scheme let the half-width of the source hwill be
equal to 2.72-10° m and the temperature will be
considered at the back edge of the heat source, i.e. at
Z =-H . Besides, let X =0 when the temperature is
determined on the workpiece surface at the interval
of 0<y/1<15, and at a=5,683-10° m%s. It is

selected three contact spot shapes: a rectangular
shape which is elongated along the QY axis; a square
shape which is equally elongated along both Y and
0Z axes; a rectangular shape which is elongated
along the 0Z axis. To provide these three shapes, the
length of the moving heat source was chosen as fol-
lows: 1=11-10° m (H / L= 0.2474); 1=3.469-107
m(H/L=0,7847);1 =1-10%m (H / L=2,7235).

Trailing edge

Leading edgey

Fig. 6. Surface temperature vsthe Z / H = f
dimensionless coordinate which coincides with the
moving heat source velocity vector
(at different values of y )

The choice of these three H /L relations

which are obtained by changing the | at the same h
=2.72 mm is due to the need for a characteristic
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change in the shape of a rectangular source: H / L
<1; H/L=1, and H/L> 1. Dimensionless pa-
rameters Hand Lare changed due to discrete
change in the velocity of the moving heat source in
the range of the following grinding modes: V = 0.2
m/min (0.0033 m/s),V = 0.5 m/min (0.0083 m/s); V
=1 m/min (0.017 m/s); V =2 m/min (0.033 m/s); V
= 4 m/min (0.067 m/s); V =5 m/min (0.083 m/s);
V = 7 m/min (0.117 m/s); V = 10 m/min (0.167
m/s);V =12 m/min (0.2 m/s). Then the dimension-
less temperatures were calculated by the equation
(10) and (11) for the three indicated characteristic
configurations of the moving rectangular heat
source: H / L<1 (Fig. 7,a), H/ L=~1 (Fig. 7, b)
and H/L> 1 (Fig. 7, ¢) on the heat source back

edge, that is at Z=-Hfor the interval of
0<Y/L<15.
B, By H/L=02474, H /L<1
[T=12m'min — L =47R69. T =19557
20/
1" =7 m/min 1=27.924. 1,=112.92]
15 . . i =
I”=4 m/'min _ M =13.936, L =04.527
10
I"=1 m/min 1-3.989. L=16.131
5
'=02mmin | " FI =(.798._I.=3.226
o (a)
0 0.2 0.4 0.6 0.8 1 12 Y/L
By g I/ L=0.7847, 11 /L= 1
T =12 i T e e - - SH=LTREG T =6104
20 F'sTmmin__ | | __ N I;f _2_?;9_21__!__ __'§§.61
15 e mmin N H=15.956._ L2035
10
I"=lmmin _ __ | ________ _!J’__R.:)L\")_._f.__."‘.tlg
5
I"=0.2 m/min M =0.798. L~1.02
0g 0.2 0.4 0.6 0.8 ] 1.2 YL
©hp . Yy H /L=27235 H /L=

1" =12 m'min

I"=7 m/min H =27.924, L=10,265

I"=4 m/min H=15.956. L =52866

I"+=1 m/min H=3.989. L =1.466

1"=0.2 m/min

0 0.2 0.4 0.6 0.8 1 1.2 Y/ L

Fig. 7. The temperatures ®,n (straight horizontal
lines) and ®,y (curved dotted lines) vs ratio of

Y / L for the moving heat source rectangular shape
which is elongated along the 0Y" axis at
H/L=0.2474,ie.at H/ L<1(a), H/ L~1(b)
and H/L>1(c)

Figure 7 shows that the difference between the
maximum temperatures ®,5and ®,5 which is ob-
served only in a certain zone located in the vicinity

of point atY =L . At Y =0 and at heat source back
edge (Z=-H) there is practically no difference

between temperatures ®;5and®,y. But for the

H/L=1 and H/L>1 the difference increases.
For example, the results of calculating the dimen-
sionless temperature by equations (10) and (11) for
| = 3.469-10° m and H / L=0,7847 (it is close to
square shape), Z =-H, andY =0 are summarized in
Table 1.

Table 1. Dimensionless temperatures for the
rectangular and strip moving sources

vV, 0,2 1,0 50 7,0
m/min

12,0

H 0,798 3,989 19,946 27,924 47,87
L 1,017 5,087 25,435 35,609 61,04
Osp 1,869 6,066 14,879 17,772 23,56

Table 1 shows that as the velocity of the rectan-
gular and strip sources increases the difference in the

surface temperatures ®;,and®,,0on the heat

sources back edges (Z=-H) at Y = 0 decreases.
The temperatures calculated by equations (10) and
(11) practically are close agreement at V >5 m/min.
To determine the divergence between the calculation
results by equations (10) and (11), i.e. on the back
edge of the moving heat source (Z=-H ) and at Y
=0 (center of the heat source) when X =0 (surface),
it is determined the ratio of the dimensionless tem-
perature by the equation (10) for the rectangular
source to the temperature by the equation (11) for
the strip source, that is it is defined the coefficient or

degree of the temperature decrease kK = @45 /0O,y .

This study shows that when H [ L<1, on the one
hand, and as the Peclet number grows, on the other
hand, the difference in the results of calculating the
maximum temperatures for the three- and two-
dimensional solutions decreases.

Exploring the Difference Between Two-
and One-dimensional Solutions
The results of the temperature field calculation
by equations (16) and (17) are presented in Fig. 8,
respectively in the left (Fig. 8, a) and right
(Fig. 8, b).
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Fig. 8. Surface ( X =0) temperature distribution
for the two- (a) and one-dimensional (b) solutions

The maximum temperature found by the two-
dimensional solution (24) is shifted to the trailing
edge of the source with the coordinate of
f=27/H=-1, but does not coincide with it. The

position of the maximum temperature varies depend-
ing on H (Fig. 9, a). At H =20, the maximum
temperature is practically at the trailing edge of the
source (Fig. 8, a). For example, at H =0.5 we have
Z/H=0536at H=5 Z/H=-0876, at H=
20, Z / H =-0.955. At the same time, the maximum
temperature found from the one-dimensional solu-
tion (25) always takes place at f =-1 (heating time

end in the one-dimensional solution) for all values of
H (Fig. 8, b).

So, the solutions (16) and (17) allow calculating
the temperature field during grinding. For the pur-
pose of demarcation of the solution (17) with a ceil-
ing not exceeding 5 % compared to the solution
(16), the maximum temperature is calculated by the
solutions with the aid of MathCAD medium in the
intervals of 0,5<H <20 and 0< X <3. The differ-
ence between the calculation results by the solutions
(24) and (25) as a function of His shown in
Fig. 9, b.

!

f=-0.54 (a)
H=05

(b)

Surface
Depth

0 3 10 15 H
Fig. 9. Position of the temperature peak on the sur-
face according to the two-dimensional solution (16)
depending on H () and the difference (in percent)
between the results of determining the maximum
temperatures by solutions (16) and (17) on the
surface (Surface) and at the depth (Depth) of the
double temperature drop (b)

The red line (“Surface” in Fig. 9, b) is the dif-
ference of the maximum surface temperatures found
by equations (16) and (17), and the blue line
(“Depth” in Fig. 9, b) is the difference of tempera-
tures by solutions (16) and (17) at the depth of the
double temperature drop found according to equa-
tion (16). There is one feature that should be noted
as for maximum deep temperature by the solution
(17). 1t lies in the fact that the counting of the deep
temperature according to the solution (17) is taken in
the coordinate f =-1 (Fig. 10, b), which gives a
slightly lower temperature than the maximum possi-
ble for this solution. As result in the shaded zone
(Fig. 9, b) the difference between the solutions (16)
and (17) does not exceed 5 %. It means that at 4
< H <20 the solution (17) with sufficient accuracy
for practice can be used to calculate the maximum
surface and deep temperatures.
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The temperature field obtained from the two-
dimensional solution (16) begins to form ahead of
the source at f > +1in the entire range of
4<H <20 (Fig. 8, a). The temperature field ob-
tained from the one-dimensional solution (Fig. 8, b)
begins to form at f =+1, which corresponds to the
start heating time pointt=0. But with the Peclet
number more than 4 (fast moving heat source at
H > 4), the temperature field is formed almost at the
leading edge of the source, i.e. at f = +1.

The formation of the temperature field obtained
by the two-dimensional solution (16) with small Pe-
clet numbers (H < 4) is shown in Fig. 10, a.

@II}' GEI}
7
o x0T
] AN (a)
5 1D . %
4 T8y, ?{;{:
%
3
A 1-0.5 %
) ’/# N
1 b= 003
71-0.005 A0\
0 e hh—-_-:*"\iﬁ.l::‘::.
S5 4 3 2 -1 0 1 f
Op. Oyp
ﬁ.

L] = L¥

]

—

0 ' -
S5 04 3 02 a4 0 01 f
Fig. 10. Maximum surface ( X =0) temperature
distribution for the two- and one-dimensional
solutions (a) and temperature distributions at various
depths below the surface at H =3 (b)

Fig. 10, a shows that as the Peclet number H
decreases, the temperature field according to the
two-dimensional solution (16) is more and more
ahead of the moving heat source, while for the one-
dimensional solution (17) the temperature field, re-
gardless of H , always starts at the point of f =+1

in which a heat source starts.

Under otherwise equal conditions, the maxi-
mum temperatures found from the two-dimensional
solution (16) are always lower than the maximum

temperatures found from the one-dimensional solu-
tion (17) for both surface and deep temperatures
both at different values H (Fig. 10, a) and at vari-
ous values of X (Fig. 10, b), but this difference de-
creases with increasing of H .

The maximum temperatures even at H =1
found from the two- and one-dimensional solutions
(16) and (17) are close (Fig. 11, a) while at H = 10
they are almost coincide (Fig. 11, b).

(__,:':mu.\

H=1
\

0 5 10 X
Fig.11. Maximum temperature vs depths below
the surface for Peclet number of H =1 (a) and
H =10 (b)
In Fig. 11 the maximum temperature ©]f5" , as

it was noted above, is taken at f = -1. That is, the
temperature determined in this way does not corre-
spond to its theoretical maximum value which takes
place at f <,-1 (Fig. 10, b) and depends on the depth
X . For example, at X =1 and X =2 we have

f=-11and f=-1,5, respectively (Fig. 10, b). For
this case, the ratio of taken temperature at f =-1to
its maximum value at f =-1,1and f =-1,5 is about

of 0,98 and 0,86 instead of 1. The deviation of this
ratio from the unit contributes to the convergence of
the results of determining the maximum temperature
by the two- and one-dimensional solutions (Fig. 11).
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Conclusions and prospects for further
research

1. A classification of the three-, two- and one-
dimensional solutions of differential equations of
heat conduction with the same initial and boundary
conditions, which best meet the grinding conditions,
was performed.

2. These solutions were converted to a typical
dimensionless form, allowing investigating the tem-
perature field at the stages of heating the surface to
be ground and its cooling (there is no heating) de-
pending on the dimensionless parameter f , which is

equal to the Z / H for three- and two-dimensional

solutions, and to the B / H for one-dimensional one.
In the first case, the variable / is the ratio of the spa-

tial dimensionless parameters while in the second —
of the time dimensionless parameters. Thus, the var-
iable f is a twice dimensionless parameter.

3. For large values of Peclet number (H >4)
the results close agreement of the two- and one-
dimensional solutions of the differential equations of
heat conduction has been established, which allows
replacing complex analytical solutions with simpler
ones that can be used in the grinding subsystems of
designing, monitoring and process diagnosing on the
CNC grinding machines, e.g. in the profile gear
grinding.

4. The analysis of the maximum temperatures
obtained from the two- and one-dimensional solu-
tions depending on the Peclet number H magnitude,
which characterizes the dimensionless velocity of
the moving heat source, was performed. It is shown
that if the Peclet number is greater than or equal to 4
(H =4), the determination of the temperature both
on the surface of the workpiece and at a depth of
two-fold temperature drop can be made on the basis
of the one-dimensional solution with a difference in
determining the maximum temperature, compared to
the two-dimensional solution, of no more than 5 %.

5. In general, for the three-, two- and one-
dimensional solutions there are two results close
agreement conditions. Firstly, for the rectangular
shape of the contact spot with the overall dimensions
of 2H =< 2L, it is necessary to check the condition
H/L<1l. For H/L=1andH /L> 1 the close
agreement is violated. Secondly, as it was mentioned
above the Peclet number H should be greater than
or equal to 4 (H >4), which corresponds to a fast
moving heat source and multi-strokes speed grinding
modes on modern CNC machines, e.g. in the profile
gear grinding.
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TEMITIEPATYPHI MOJIEJII JIJII MOHITOPUHTY CTAHY TEXHOJIOI'TYHOI
CUCTEMM HIVII®YBAHHA

Anomayin. Temnepamypa winighysanus 06Mexcye nPoOYKMUBHICMb yiei onepayii' i € 8ax3CIUSUM NAPAMEMPOM OJisi OYIHKU CIMAHY MEXHON02i4-
Hoi' cucmemu. OOHAK 6 ICHYIOUUX KOMN'TOMEPHUX CUCIEMAX MOHIMOPUHZY ma MexXHON02iYHol diaenocmuku Ha éepcmamax 3 YIIK ingpopmayis npo
NOMOYHy memnepamypi wnighysanus 6iocymus. Lle 8UKIUKAHO MPYOHOWAMU IPAMO20 | HENPAMO2O SUMIPIOBAHHS Yb020 napamempd. Y nepuiomy
B8UNAOKY — MPYOHOWAMU 3 YCIMAHOBKOK OAMYUKIE MEeMNEPAmypu, y Opy2oMy — 8I0CYMHI NPULHAMHI MAMEMAMUYHi MOOei OJisl 6USHAYEHHS. meMne-
pamypu winipysanns. Mema 0ocuioxcenns - po3pooxa 6inbiu npocmoi memnepamypHoi mooeni, sika 6yoe nPUtHAMHOKW OJisl CY4ACHO20 WIIQYS8anHs 3
BENUKUMU ZHAYEHHAMU WEUOKOCI 3A20MOSKU W00 Wighyeanvno2o Kpyea. /s docsaenenHs memu Q0CHiONHCeHHs OY1a 6UKOHAHA Klacugikayis pi-
wenb mpu-, 060- i 0OHOBUMIPHO20 OUDEPEHYIATLHUX PIGHAHb MENIONPOGIOHOCII 3 0OHAKOBUMU NOYAMKOGUMU | SDAHUYHUMU YMOSAMYU 051 OOCII-
OJKCeHHsT memMnepamyp winipyeants 3a 0ONOMO20I0 Yux piuleHb NpU [HWUX PIGHUX YMOSAX. YMou OAU3bKO2O Y32000iCeHHsI pe3yNbmamie piuietb

6CMAHOBTIOIONMbCA 6 3ANENCHOCII 610 2e0MempuyHOi KoH(izypayii 30uu Konmaxmy misxc winigpyeansnum kpyeom i sazomosxoro: H [ L <1i H > 4,

de H i L - nonosuna wupunu i nonoguna 008icunu 30HUu KOHMAKmMy, 6ionogioHo. Buwesasnaueni mpu piwenns oughepenyianbhux pigHsaHb menion-
POBIOHOCT OMPUMAHO NPU SPAHUYHUX YMOBAX OPY2020 pody i 6y nepemeopeni 6 00HOPIOHy be3po3MIpHY popmy, 6 sKil be3posmipHa memnepanmy-
pa 3anexcums 8i0 KOOpOUHamu i Kpamuocmi 6e3posmipHoeo uacy yucny Ilekie, axke xapakmepusye yeil 4ac, a maxkoxic 6e3po3mipHi NiGUUPUHY | Weu-
Oxicmb pyxomoz2o Oxcepena menna. Ilopisnsanvnuil ananiz nogepxuesux i enubunnux memnepamyp 0ye eukonanuil Ons mpbox 3a3HAYEeHUX suwye pi-
wenw 6 3anedxcrocmi 6i0 yuciaa Iexne. Iloxkazana Modiciugicmo 8uUsHaAueHHs MeMnepamypu Wnigyeants Ha CyYacHux GUCOKOUBUOKICHUX 6epcmamax
3 YIIK 3a oonosumipnum piwenusim npu H > 4 na ocnoei komn'tomeprux niocucmem npoekmyeants, KOHMpouo ma 0iazHoCmuKu onepayii wiigy-
6aHH.

Kniwouosi cnosa: memnepamypa winiyyganus; memnepamypHi mooeiui, 6e3po3mipHa memnepamypa, pyxausuil 0xcepeio menia, posnooii me-
mnepamypu; gpopma mennoeozo Oxcepena; yucio Ilexne
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TEMIIEPATYPHBIE MOJAEJIN IJ1 MOHUTOPUHI'A COCTOSIHUA
TEXHOJOTMYECKOM CUCTEMBI HIJIN®OBAHUS

Annomayusn. Temnepamypa wnugoeanus ocpanuyusaem npou3eo00UmenbHOCHb SMol ONepayuu U A6JIAemcs 6AHCHLIM Napa-
Mempom 05t OYEHKU COCMOSIHUS MeXHO02uueckol cucmemvl. OOHAKO 8 CYUeCmBYIOWUX KOMNbIOMEPHBIX CUCIEMAX MOHUMOPUH2A
U MexHONo2UYecKol OuacHocmuku Ha cmaukax ¢ 9ITY ungopmayus o mexywei memnepamype wiaugosanus omcymemeayem. dmo
6bI36AHO MPYOHOCMAMU NPAMO20 U KOCBEHHO20 USMEPEHUs MO0 napamempa. B nepeom ciyuae — mpyoHocmamu ¢ yCMAaHO8KOU
0amyuKo8 memnepamypbl, 80 8MOPOM — OMCYMCMEYIOM npuemiemMble MamemMamuyeckue Mooeiu O OnpedeneHus memnepamypbl
wugosanust. Llenv uccneoosanus - paspabomia 60iee npocmoil memMnepamypHoi MoOenu, npuemMaemMol 0isk COBPEMEHHO20 WAUPo-
6aHUA C OONBUUMY SHAYEHUAMU CKOPOCMU 3A20MOBKU OMHOCUMENLHO WAUPO8ANbHO20 Kpyea. /st 00Cmudicenus yenu uccied08anus
ObLIA 8LINOAHEHA KIACCUPDUKAYUSA DeUeHUtl mpex-, 08YX- U 0OHOMEPHO20 OUPDEPEeHYUATLHBIX YPABHEHUTI TMeNnI0NPOBOOHOCMU C
OOUHAKOBLIMU HAYATLHOIMU U SPAHUYHBIMU YCIOBUAMU OIS UCCIEO08AHUA MEMNEPAMYP WAUDOBAHUSL C NHOMOWBIO IMUX PeuleHUll
npU NPOYUX PABHBIX YCIO0BUAX. YCN08UA OIUZKO20 COLNACOBAHUS PE3YTbMAMO8 peuleHull YCmaHasugaomes 8 3a6UCUMOCmu om
2e0MEMPUUECKOll KOHGU2YPayuL 30Hbl KOHMAKMA MedicOy waupoeansivim kpyeom u 3azomosxoti: H [ L <lu H >4, 20e H u L-
NONOBUHA WUPUHBL U NOTOBUHA ONUHBL 30HbI KOHMAKMA, COOMBEMCMeeHHO. Boiueynomanymeie mpu pewenus oughgepenyuanbhuix
YPasHeHUti MenionposoOHOCMU NOTYYEHbl NPU SPAHUYHBIX YCI0BUAX 6MOPO20 podd U ObLiUu npeodpazoeansvl 8 0OHOPOOHYIO be3pas-
MepHYI0 PopMy, 6 KOMOPOU be3pasmMepHas memMnepamypa 3aeucim on KOOPOUHAMbL U KPAMHOCMU Oe3PA3MEPHO20 8PEMEHU YUCTY
Iexne, komopoe xapakmepuzyem 3mo epems, a makoice be3pazmepHvle NOIYWUPUHY U CKOPOCHTL OBUICYUE20Cs UCMOYHUKA Mend.
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Cpasnumenvbubvlii ananu3 NOBEPXHOCMHBIX U 2IYOUHHBIX meMnepamyp Oblil 6bINOIHEH OISl Mpex YKA3AHHbIX Gbllle PeeHUll 8 3a6UCH-
mocmu om yucna Ilexne. [Tlokazana 603M0ACHOCMb OnpedeneHust memMnepamypbl WAU@O8aAHUs HA COBPEMEHHBIX 8bICOKOCKOPOCHHbIX
cmanxax ¢ YI1Y no oonomepuomy pewenuio npu H >4 na ocHose KOMHLIOMEPHBIX NOOCUCTEM NPOEKMUPOBAHUSA, KOHMPOL U
OUASHOCIUKY ONEPAYUL UTUDOBAHUSL.

Knroueevie cnosa: memnepamypa winugosanus; memnepamypHsie Mooeiu;, 6e3pasmepHas memnepamypa; noOGUICHbIN UC-
MOYHUK menaa; pacnpeoeneHie memnepamypol; hopma meniogozo ucmounuxa, yucno Ilexie
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