Materials of the VII International Scientific Conference «Information-Management Systems and Technologies» 17th – 18th September, 2018, Odessa

результатов экспериментальных наблюдений // Инженерная физика, $2017. - N_2 9. - C. 58-61.$

4. Якимов В.Н., Батищев В.И., Машков А.В. Статистическая идентификация линейных динамических систем с использованием знакового аналого-стохастического квантования входного и выходного сигналов // Мехатроника, автоматизация, управление, 2017. – Т. 18. №9. – С. 604 - 611.

УДК 004.891

Коновалов С.Н., Вычужанин В.В., д.т.н. ИСКУССТВЕННАЯ НЕЙРОННАЯ СЕТЬ ДЛЯ ГИБРИДНОЙ ЭКСПЕРТНОЙ СИСТЕМЫ

Konovalov S.N., Dr.Sci. Vychuzhanin V.V. ARTIFICIAL NEURAL NETWORK FOR HYBRID EXPERT SYSTEM

Гибридные экспертные системы (ГЭС) могут обеспечивать безопасную работу различных сложных технических систем (СТС) [1]. Одним из составных компонентов большинства ГЭС являются искусственные нейронные сети (ИНС) [2,3].

Использование ИНС позволяет получить более достоверные результаты за счёт свойств обучения и обобщения.

Однако, ИНС имеют и недостатки, влияющие на точность результатов работы ГЭС [2].

Несмотря на большую распространённость, в силу нерешённых задач, разработка ИНС для ГЭС актуальна.

Каждый нейрон предложенной ИНС имеет один вход и несколько выходов.

Функционирование нейрона зависит от значений входных сигналов, весов синапсов, порогового значения и вероятности срабатывания нейрона

Materials of the VII International Scientific Conference «Information-Management Systems and Technologies» 17th – 18th September, 2018, Odessa

$$y = \begin{cases} 1 _npu _P > \Pi, \\ 0 _npu _P = \Pi, \\ -1 _npu _P < \Pi \end{cases}$$
 (1)

где Р – потенциал или состояние нейрона

$$P = \sum_{i=1}^{n} q_i x_i p_i \tag{2}$$

где q_i – весовой коэффициент i -го нейрона;

 \mathcal{X}_i – входной сигнал i -го нейрона;

 p_i – вероятность срабатывания i -го нейрона;

n – количество входов нейрона.

Для нейронов используется сигмоидальная функция

$$f(x) = \frac{1}{1 + e^{-\alpha x}} \tag{3}$$

Обучение сети происходит за счёт объединения методов обратного распространения ошибки [4] и рекуррентного метода.

Метод обратного распространения ошибки удобен, в случае нехватки данных для рекуррентного метода.

В общем виде нейронная сеть для ГЭС представляет собой многослойный персептрон с несколькими скрытыми слоями, а также со слоем рекуррентных нейронов.

ИНС имеет один выход, показывающий значение работоспособности СТС, слой перед выходом содержит значения работоспособностей элементов СТС, а на входы подаются факторы и критерии работоспособности (рис. 1).

Materials of the VII International Scientific Conference «Information-Management Systems and Technologies» 17th – 18th September, 2018, Odessa

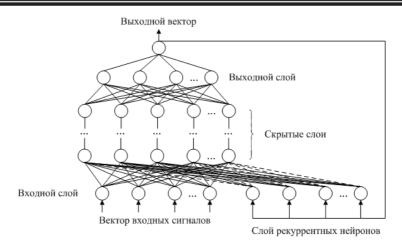


Рис. 1. Многослойная рекуррентная ИНС

Разработанная искусственная нейронная сеть позволяет вести расчёты для гибридной экспертной системы с большим диапазоном данных. При этом она избегает ошибок и сбоев за счёт многофункциональности в вычислениях, а также при обучении.

Литература

- 1. Коновалов С.Н. Гибридные экспертные системы для противоаварийного управления сложными техническими объектами / С.Н. Коновалов, В.В. Вычужанин// Вестник Одесского национального морского университета, сборник научных трудов, Одесса: ОНМУ, 2017. Том 51, №2. С. 165 178.
- 2. Коновалов С.Н. Применение гибридных экспертных систем для прогнозирования технического состояния сложных систем / С.Н. Коновалов, В.В. Вычужанин. // Межвузовский сборник научных статей (с международным участием) «Актуальные проблемы автотранспортного комплекса», Самара: СамГТУ, 2017. С. 95-102.
- 3. Коновалов С.Н. Информатизация противоаварийного управления сложными техническими системами / С.Н. Коновалов, В.В. Вычужанин.

Materials of the VII International Scientific Conference «Information-Management Systems and Technologies» 17th – 18th September, 2018, Odessa

// Информатика и математические методы в моделировании, Одесса: ОНПУ, 2017. – Том 7, №4. – С. 265 - 275.

4. Коновалов С.Н. Method for antifault control of complex technical systems / С.Н. Коновалов, В.В. Вычужанин. // Розвиток транспорту, збірник наукових праць, Одеса, ОНМУ, 2017. – №1(1). – С. 45 - 59.

УДК 681.335:004.891

Мазурок Т.Л., д.т.н. ІНТЕЛЕКТУАЛЬНЕ УПРАВЛІННЯ ІНТЕГРОВАНИМ НАВЧАННЯМ

Dr. Sci. Mazurok T.L. INTELLECTUAL CONTROL OF INTEGRATED TEACHING

Інтеграція наукових знань має бути відображеною у різних видах інтегративного навчання, становити невід'ємну частину будь-якої форми навчання — від традиційного до електронного.

Розглянемо методику використання автоматизованої системи управління навчанням (АСУ-Н) для автоматизації управління інтегрованим навчанням для основних форм навчання, що є результатом впровадження та досліджень особливостей використання АСУ-Н в навчальному процесі ЗВО та середньої школи [1].

Як відомо, інтегративне навчання класифікується в залежності від ступеня інтеграції на три види [2]: взаємозв'язок, при якому при виклаланні однієї навчальної лиспипліни випалковим чином використаються відомості 3 інших навчальних дисциплін: міжпредметний взаємозв'язок, для якого характерним ϵ використання матеріалу допоміжної дисципліни, що приєднується до основної, рівномірно на протязі всього курсу; інтеграція, що передбачає об'єднання понять, задач систематично та постійно в кожній темі.

Найбільш ефективними ε останні дві форми, тому в подальшому будемо розглядати саме ці форми здійснення інтегрування.