Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/11054
Название: | Information Technology for Automated Assessment of the Artillery Barrels Wear Based on SVM Classifier |
Другие названия: | Інформаційна технологія автоматизованої оцінки зносу артилерійських стволів на основі SVM-класифікатора Информационная технология автоматизированной оценки уровня износа артиллерийских стволов на основе SVM-классификатора |
Авторы: | Dobrynin, Ye. Добринін, Євген Вікторович Добрынин, Евгений Викторович Boltenkov, Viktor Болтьонков, Віктор Олексійович Болтенков, Виктор Алексеевич Maksymov, Maksym Максимов, Максим Віталійович Максимов, Максим Витальевич |
Ключевые слова: | artillery barrel; wear level; ballistic wave; muzzle wave; binary SVM classifier; information technology артилерійський ствол; рівень зносу; балістична хвиля; дулова хвиля; бінарний SVM-класифікатор; інформаційна технологія артиллерийский ствол; уровень износа; баллистическая волна; дульная волна; информационная технология бинарный SVM-классификатор; |
Дата публикации: | 23-Сен-2020 |
Издательство: | Odessa National Polytechnic University |
Библиографическое описание: | Dobrynin, Ye., Boltenkov, V., Maksymov, M. (2020). Information Technology for Automated Assessment of the Artillery Barrels Wear Based on SVM Classifier. Applied Aspects of Information Technology, Vol. 3, N 3, p. 117–132. Dobrynin, Ye. Information Technology for Automated Assessment of the Artillery Barrels Wear Based on SVM Classifier / Ye. Dobrynin, V. Boltenkov, M. Maksymov // Applied Aspects of Information Technology = Прикладні аспекти інформ. технологій. – Оdesa, 2020. – Vol. 3, N 3. – P. 117–132. |
Краткий осмотр (реферат): | An information technology for the automated assessment of the has been developed wear level has been developed. Information
technology is based on the analysis of acoustic fields accompanying a shot. The acoustic field of the shot consists of a ballistic wave
accompanying a projectile flying out at a supersonic speed, and a muzzle wave generated when propellant gases are ejected from the
barrel. The parameters of the ballistic and muzzle waves depend significantly on the level of barrel wear. This makes it possible to
construct an automatic classifier of the barrel wear level based on the analysis of informative features of acoustic signals recorded by
microphones near the weapon's firing position. The information technology is based on a binary SVM classifier. A set of records of
acoustic fields of shots was synthesized on the basis of real signals recorded when firing a 155 mm howitzer. From the set of records,
a training and test set of information features were formed for training the classifier and assessing its quality. Methods of preliminary
data normalization of training and test samples are investigated. A technique for optimizing the classifier hyperparameters with
instance cross-validation has been developed. The technique is a two-stage method for finding the optimal values of
hyperparameters. In the first stage, the search is performed on an exponential decimal grid. At the second stage, the optimal values of
hyperparameters are refined on a linear grid. A method for the binary classification of artillery barrels according to the wear level has
been formulated. Checking the classifier on a consistent test sample showed that it provides the correct classification of barrel wear
with a probability of 0.94. An information technology has been developed for classifying artillery barrels by wear level based on the
analysis of acoustic fields of shots. Information technology consists of three stages: data preparation, construction, training an
optimization of the binary SVM classifier and the operation of the binary SVM classifier. A field experiment was carried out, which
confirmed the correctness of the basic scientific and technical solutions. An automated system has been developed for classifying
wellbores by wear level. Розроблено інформаційну технологію автоматизованої оцінки рівня зносу артилерійських стволів. Інформаційна технологія заснована на аналізі акустичних полів, які супроводжують постріл. Акустичне поле пострілу складається з балістичної хвилі, що супроводжує вилітаючий з надзвуковою швидкістю снаряд, і дульної хвилі, що утворюється при викиді зі стволу порохових газів. Параметри балістичної і дульної хвиль істотно залежать від рівня зносу стволу. Це дає можливість побудувати автоматичний класифікатор стволів за рівнем зносу на підставі аналізу інформативних ознак акустичних сигналів, зареєстрованих мікрофонами поблизу вогневої позиції гармати. В основу інформаційної технології покладено бінарний SVM-класифікатор. Синтезовано набір записів акустичних полів пострілів на основі реальних сигналів, зареєстрованих при стрільбі 155 мм гаубиці. З набору записів сформовані навчальна і тестова вибірка інформаційних ознак для навчання класифікатора і оцінки його якості. Досліджено методи попередньої нормалізації даних навчальної та тестової вибірок. Розроблено методику оптимізації гіперпараметрів класифікатора шляхом поекземплярної крос-валідації. Методика являє собою двоетапний пошук оптимальних значень гіперпараметрів. На першому етапі пошук здійснюється на експоненційній десяткової сітці. На другому етапі оптимальні значення гіперпараметрів уточняються на лінійній сітці. Сформульовано метод бінарної класифікації артилерійських стволів за рівнем зносу. Перевірка класифікатора на спроможній тестової вибірці показала, що він забезпечує правильну класифікацію зносу стволів з ймовірністю 0,94. Розроблено інформаційну технологію класифікації артилерійських стволів за рівнем зносу на підставі аналізу акустичних полів пострілів. Інформаційна технологія складається з трьох стадій: підготовка даних, побудова, навчання і оптимізація бінарного SVM-класифікатор і експлуатація бінарного SVM-класифікатор. Проведено польовий експеримент, що підтвердив правильність основних наукових і технічних рішень. Розроблено автоматизовану систему для класифікації стволів за рівнем зносу. Разработана информационная технология автоматизированной оценки уровня износа артиллерийских стволов. Информационная технология основана на анализе акустических полей, сопровождающих выстрел. Акустическое поле выстрела состоит из баллистической волны, сопровождающей вылетающий со сверхзвуковой скоростью снаряд, и дульной волны, образующейся при выбросе из ствола пороховых газов. Параметры баллистической и дульной волн существенно зависят от уровня износа ствола. Это дает возможность построить автоматический классификатор уровня износа стволов на основании анализа информативных признаков акустических сигналов, зарегистрированных микрофонами вблизи огневой позиции орудия. В основу информационной технологии положен бинарный SVM-классификатор. Синтезирован набор записей акустических полей выстрелов на основе реальных сигналов, зарегистрированных при стрельбе 155 мм гаубицы. Из набора записей сформированы обучающая и тестовая выборка информационных признаков для обучения классификатора и оценки его качества. Исследованы методы предварительной нормализации данных обучающей и тестовой выборок. Разработана методика оптимизации гиперпараметров классификатора путем поэкземплярной кросс-валидации. Методика представляет собой двухэтапный метод поиска оптимальных значений гиперпараметров. На первом этапе поиск осуществляется на экспоненциальной десятичной сетке. На втором этапе оптимальные значения гиперпараметров уточняются на линейной сетке. Сформулирован метод бинарной классификации артиллерийских стволов по уровню износа. Проверка классификатора на состоятельной тестовой выборке показала, что он обеспечивает правильную классификацию износа стволов с вероятностью 0,94. Разработана информационная технология классификации артиллерийских стволов по уровню износа на основании анализа акустических полей выстрелов. Информационная технология состоит из трех стадий: подготовка данных, построение, обучение и оптимизация бинарного SVM-классификатора и эксплуатация бинарного SVMклассификатора. Проведен полевой эксперимент, подтвердивший правильность основных научных и технических решений. Разработана автоматизированная система для классификации стволов по уровню износа. |
URI (Унифицированный идентификатор ресурса): | http://dspace.opu.ua/jspui/handle/123456789/11054 |
ISSN: | 2617-4316 2663-7723 |
Располагается в коллекциях: | 2020, Vol. 3, № 3 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
1_Добрынин.pdf | 1.83 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.