Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/13156
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorGalchonkov, Oleg-
dc.contributor.authorNevrev, Alexander-
dc.contributor.authorShevchuk, Bohdan-
dc.contributor.authorBaranov, Nikolay-
dc.date.accessioned2022-12-08T12:44:13Z-
dc.date.available2022-12-08T12:44:13Z-
dc.date.issued2022-
dc.identifier.citationGalchonkov, O., Nevrev, A., Shevchuk, B., Baranov, N. (2022). Definition of the influence of the choice of the pruning procedure parameters on the quality of training of a multilayer perceptron. Eastern-European Journal of Enterprise Technologies, 1 (9 (115)), 75–83. doi: https://doi.org/10.15587/1729-4061.2022.253103en
dc.identifier.otherUDC 681.3.07: 004.8-
dc.identifier.otherdoi: https://doi.org/10.15587/1729-4061.2022.253103-
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/13156-
dc.description.abstractPruning connections in a fully connected neural network allows to remove redundancy in the structure of the neural network and thus reduce the computational complexity of its implementation while maintaining the resulting characteristics of the classification of images entering its input. However, the issues of choosing the parameters of the pruning procedure have not been sufficiently studied at the moment. The choice essentially depends on the configuration of the neural network. However, in any neural network configuration there is one or more multilayer perceptrons. For them, it is possible to develop universal recommendations for choosing the parameters of the pruning procedure. One of the most promising methods for practical implementation is considered – the iterative pruning method, which uses preprocessing of input signals to regularize the learning process of a neural network. For a specific configuration of a multilayer perceptron and the MNIST (Modified National Institute of Standards and Technology) dataset, a database of handwritten digit samples proposed by the US National Institute of Standards and Technology as a standard when comparing image recognition methods, dependences of the classification accuracy of handwritten digits and learning rate were obtained on the learning step, pruning interval, and the number of links removed at each pruning iteration. It is shown that the best set of parameters of the learning procedure with pruning provides an increase in the quality of classification by about 1 %, compared with the worst set in the studied range. The convex nature of these dependencies allows a constructive approach to finding a neural network configuration that provides the highest classification accuracy with the minimum amount of computational costs during implementationen
dc.language.isoen_USen
dc.publisherEastern-European Journal of Enterprise Technologiesen
dc.subjectmultilayer perceptronen
dc.subjectneural networken
dc.subjectpruningen
dc.subjectlearning curveen
dc.subjectweight coefficientsen
dc.subjectimage classificatioen
dc.titleDefinition of the influence of the choice of the pruning procedure parameters on the quality of training of a multilayer perceptron.en
dc.typeArticle in Scopusen
opu.citation.journalEastern-European Journal of Enterprise Technologiesen
opu.citation.volume9(115)en
opu.citation.firstpage75en
opu.citation.lastpage83en
opu.citation.issue1en
opu.staff.idgalchonkov@op.edu.uaen
Располагается в коллекциях:Статті каф. ІС

Файлы этого ресурса:
Файл Описание РазмерФормат 
253103-Article Text-582571-1-10-20220228.pdf1.98 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.