Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/13462
Название: | Algorithm for the routes formation of food raw materials procurement on the community territory taking into account the production conditions during emergency situations |
Другие названия: | Алгоритм формування маршрутів заготівлі продовольчоїсировини на території громади з урахуванням виробничих умов під час надзвичайних ситуацій |
Авторы: | Тryhuba, Аnatoliy Тригуба, Анатолій Миколайович Тригуба, Анатолий Николаевич Koval, Nazarii Коваль, Назарій Ярославович Коваль, Назарий Ярославович Ratushnyi, Andrii Ратушний, Андрій Романович Ратушный, Андрей Романович Тryhuba, Inna Тригуба, Iнна Леонтіївна Тригуба, Инна Леонтьевна Shevchuk, Viktor Шевчук, Віктор Володимирович Шевчук, Виктор Владимирович |
Ключевые слова: | Algorithm formation of routes provision food raw materials Emergency changing production conditions |
Дата публикации: | 10-Апр-2023 |
Издательство: | Nauka i Tekhnika |
Библиографическое описание: | Тryhuba, А., Koval, N., Ratushnyi, A., Тryhuba, I., Shevchuk, V. (2023). Algorithm for the routes formation of food raw materials procurement on the community territory taking into account the production conditions during emergency situations. Аpplied Aspects of Information Technology, Vol. 6, N 1, р. 60–73. Algorithm for the routes formation of food raw materials procurement on the community territory taking into account the production conditions during emergency situations / А. Тryhuba, N. Koval, A. Ratushnyi, I. Тryhuba, V. Shevchuk // Аpplied Aspects of Information Technology = Прикладні аспекти інформ. технологій. – Оdesa, 2023. – Vol. 6, N 1. – P. 60–73. |
Краткий осмотр (реферат): | The article concerns the improvement of the ACO (Ant Colony Optimization) ant colony optimization algorithm for the formation of routes of vehicles for the procurement of food raw materials on the territory of the community during emergencies. The purpose of the studyis to improve the algorithm for the formation of routes of vehicles for the procurement of food raw materials on the territory of the community during emergencies. The proposed algorithm is based on the classical algorithm of ant colony optimization ACO and, unlike it, takes into account real production conditions during emergencies. The task of the research is to create an algorithm for the formation of effective routes of vehicles for the procurement of food raw materials in the territory of the community during emergencies, as well as its comparison with the classic ACO algorithm for solving various problems of route formation. It was established that the use of the classic algorithm for the optimization of ant colonies ACO, or its known modernizations, does not provide a high-quality solution to the problem of forming routes of vehicles for harvesting food raw materials on the territory of the community during emergencies.This is due to incomplete consideration of specific production conditions. The improved route formation algorithm involves 8 steps and is based on the classic ACO algorithm. In contrast to it, it takes into account real production conditions (damaged sections of the roadway, the presence of partial passage of vehicles, traffic jams caused by an emergency, etc.). The rule of the classic ACO algorithm regarding the selection of the next point in the route using the probabilistic-proportional transition of the k-th ant from the i-th to the j-th node (farm producing food raw materials) is proposed, replaced by one that takes into account the state of production conditions (road surface) be-tween individual nodes. This ensures an increase in accuracy and a decrease in the duration of route formation, as well as anincrease in the quality of making appropriate management decisions. The obtained results regarding the comparison of the use of algorithms when solving transport problems with a different number of vertices indicate that the proposed algorithm provides a deviation of the total path in the route, which does not exceed 1%. The proposed algorithm reduces the decision-making time by up to 6% in the presence of up to 50 units of vertices, and by 12...15% in the presence of vertices from 51 to 100 units. The improved vehicle routing algorithmcan be used in decision-making support systems to plan the procurement of food raw materials on the territory of the community during emer-gencies, which will increase their efficiency. |
URI (Унифицированный идентификатор ресурса): | http://dspace.opu.ua/jspui/handle/123456789/13462 |
ISSN: | 2617-4316 2663-7723 |
Располагается в коллекциях: | 2023, Vol. 6, № 1 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
162-Article Text-385-2-10-20230420.pdf | 798.55 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.