Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/13908
Название: | A survey on deep learning based face detection |
Другие названия: | Огляд з детектуванняобличь на основі глибокого навчання |
Авторы: | Tran The Vinh Tran Чан Тхе Вінь Чан Чан Тхэ Винь Чан Nguyen Thi Khanh Tien Нгуєн Тхі Кхань Тієн Нгуен Тхи Кхань Тиен Tran Kim Thanh Чан Кім Тхань Чан Ким Тхань |
Ключевые слова: | Face detection one-stage detector two-stage detector deep learning single shot detector multi-task cascaded convolutional neural networks RetinaNet YuNet |
Дата публикации: | 3-Июл-2023 |
Издательство: | Nauka i Tekhnika |
Библиографическое описание: | Tran The Vinh Tran, Nguyen Thi Khanh Tien, Tran Kim Thanh. (2023). A survey on deep learning based face detection. Аpplied Aspects of Information Technology, Vol. 6, N 2, p. 201–212. Tran The Vinh Tran. A survey on deep learning based face detection / Tran The Vinh Tran, Nguyen Thi Khanh Tien, Tran Kim Thanh // Аpplied Aspects of Information Technology = Прикладні аспекти інформ. технологій. – Оdesa, 2023. – Vol. 6, N 2. – P. 201–212. |
Краткий осмотр (реферат): | The article has focused on surveying face detection models based on deep learning, specifically examining different one-stage models in order to determine how to choose the appropriate face detection model as well as propose a direction to enhance ourfacedetection model to match the actual requirements of computer vision application systems related to the face. The face detection models that were conducted survey include single shot detector, multi-task cascaded convolutionneural networks, RetinaNet, YuNet on the Wider Face dataset. Tasks during the survey are structural investigation of chosen models, conducting experimental surveys to evaluate the accuracy and performance of these models. To evaluate and provide criteria for choosing facedetection suitable for the requirements, two indicators are used, average precision to evaluate accuracy and frames-per-second toevaluate performance. Experientialresults were analyzed and used for making conclusions and suggestions for future work. For our real-time applications on face-related camera systems, such as driver monitoring system, supermarket security system (shoplifting warning, disorderly warning), attendance system, often require fast processing, but still ensures accuracy. The models currently appliedin our system such as Yolos, Single ShotDetector, MobileNetv1 guarantee real-time processing, but most of these models have difficulty in detecting small faces in the frame and cases containing contexts, which are easily mistaken for a human face. Meanwhile, the RetinaNet_ResNet50 model brings the highest accuracy, especially to ensure the detection of small faces in the frame, but theprocessing time is larger. Therefore, through this survey, we propose an enhancement direction of the face detection model based on the RetinaNet structure with the goal of ensuring accuracy and reducing processing time. |
URI (Унифицированный идентификатор ресурса): | http://dspace.opu.ua/jspui/handle/123456789/13908 |
ISSN: | 2617-4316 2663-7723 |
Располагается в коллекциях: | 2023, Vol. 6, № 2 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
186-Article Text-424-2-10-20230705.pdf | 1.33 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.