Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/13908
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorTran The Vinh Tran-
dc.contributor.authorЧан Тхе Вінь Чан-
dc.contributor.authorЧан Тхэ Винь Чан-
dc.contributor.authorNguyen Thi Khanh Tien-
dc.contributor.authorНгуєн Тхі Кхань Тієн-
dc.contributor.authorНгуен Тхи Кхань Тиен-
dc.contributor.authorTran Kim Thanh-
dc.contributor.authorЧан Кім Тхань-
dc.contributor.authorЧан Ким Тхань-
dc.date.accessioned2023-07-07T13:29:49Z-
dc.date.available2023-07-07T13:29:49Z-
dc.date.issued2023-07-03-
dc.identifier.citationTran The Vinh Tran, Nguyen Thi Khanh Tien, Tran Kim Thanh. (2023). A survey on deep learning based face detection. Аpplied Aspects of Information Technology, Vol. 6, N 2, p. 201–212.en
dc.identifier.citationTran The Vinh Tran. A survey on deep learning based face detection / Tran The Vinh Tran, Nguyen Thi Khanh Tien, Tran Kim Thanh // Аpplied Aspects of Information Technology = Прикладні аспекти інформ. технологій. – Оdesa, 2023. – Vol. 6, N 2. – P. 201–212.en
dc.identifier.issn2617-4316-
dc.identifier.issn2663-7723-
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/13908-
dc.description.abstractThe article has focused on surveying face detection models based on deep learning, specifically examining different one-stage models in order to determine how to choose the appropriate face detection model as well as propose a direction to enhance ourfacedetection model to match the actual requirements of computer vision application systems related to the face. The face detection models that were conducted survey include single shot detector, multi-task cascaded convolutionneural networks, RetinaNet, YuNet on the Wider Face dataset. Tasks during the survey are structural investigation of chosen models, conducting experimental surveys to evaluate the accuracy and performance of these models. To evaluate and provide criteria for choosing facedetection suitable for the requirements, two indicators are used, average precision to evaluate accuracy and frames-per-second toevaluate performance. Experientialresults were analyzed and used for making conclusions and suggestions for future work. For our real-time applications on face-related camera systems, such as driver monitoring system, supermarket security system (shoplifting warning, disorderly warning), attendance system, often require fast processing, but still ensures accuracy. The models currently appliedin our system such as Yolos, Single ShotDetector, MobileNetv1 guarantee real-time processing, but most of these models have difficulty in detecting small faces in the frame and cases containing contexts, which are easily mistaken for a human face. Meanwhile, the RetinaNet_ResNet50 model brings the highest accuracy, especially to ensure the detection of small faces in the frame, but theprocessing time is larger. Therefore, through this survey, we propose an enhancement direction of the face detection model based on the RetinaNet structure with the goal of ensuring accuracy and reducing processing time.en
dc.language.isoenen
dc.publisherNauka i Tekhnikaen
dc.subjectFace detectionen
dc.subjectone-stage detectoren
dc.subjecttwo-stage detectoren
dc.subjectdeep learningen
dc.subjectsingle shot detectoren
dc.subjectmulti-task cascaded convolutional neural networksen
dc.subjectRetinaNeten
dc.subjectYuNeten
dc.titleA survey on deep learning based face detectionen
dc.title.alternativeОгляд з детектуванняобличь на основі глибокого навчанняuk
dc.typeArticleen
opu.citation.journalApplied Aspects of Information Technologyen
opu.citation.volume2en
opu.citation.firstpage201en
opu.citation.lastpage212en
opu.citation.issue6en
Располагается в коллекциях:2023, Vol. 6, № 2

Файлы этого ресурса:
Файл Описание РазмерФормат 
186-Article Text-424-2-10-20230705.pdf1.33 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.