Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/14347
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVychuzhanin, A.-
dc.contributor.authorВичужанін, А.В.-
dc.contributor.authorВычужанин, А.В.-
dc.date.accessioned2024-05-08T11:12:59Z-
dc.date.available2024-05-08T11:12:59Z-
dc.date.issued2022-
dc.identifier.citationVychuzhanin A. Intelligent system for assessing and forecasting the risk of failure of components of a complex technical system / A. Vychuzhanin // Інформатика та мат. методи в моделюванні = Informatics and Mathematical Methods in Simulation. – Одеса, 2022. – Т. 12, № 3. – С. 154–161.en
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/14347-
dc.description.abstractThe complexity of the composition and the increase in the number of technical systems lead to an increase in the intensity of their failures. As a result, there is a need to repair the equipment of complex technical systems, leading to system downtime. The search for failed components and the elimination of their failures contributes to an increase in the safety level of operation of complex technical systems. Diagnostics and prediction of failures of components of automated systems and mechanisms (subsystems, elements, intersystem and interelement connections) in real operation to find and eliminate the causes of failures remains an urgent task. The operational reliability of restored complex technical systems and their components is effectively achieved by the strategy of operating systems with technical condition monitoring based on technical diagnostic systems. Reducing failures and man-made risks in the operation of complex technical systems is facilitated by predicting their technical condition based on diagnostics. The article presents an intelligent system that operates using the developed model for assessing and predicting the risk of failure of components of a complex technical system using the example of a ship power plant. Building a model taking into account the hierarchical levels of subsystems (components), intersystem (interelement) connections of an intelligent system is based on the use of a priori information about failures of components of complex technical systems. The model connects the types of technical condition of components and diagnostic features of systems in the form of the risk of their failures. The use of a posteriori inference in Bayesian belief networks makes it possible to determine the risk of system component failures, taking into account the incoming diagnostic information and information about component failures. In order to build and research a diagnostic Bayesian network model of an intelligent system for assessing the risk of failures for a system for diagnosing and predicting the technical condition of the components of a complex technical system consisting of numerous variables, the software product GeNIe was used. The results of studies of the model for assessing and predicting the risk of failure of components of a complex technical system confirmed the possibility of predicting the risk of failure of components and the system as a whole.en
dc.description.abstractСкладність складу та збільшення кількості технічних систем призводять до зростання інтенсивності їх відмов. В результаті виникає необхідність ремонту обладнання складних технічних систем, що веде до простоїв систем. Пошук компонентів, що відмовили, та усунення їх відмов сприяє підвищенню рівня безпеки експлуатації складних технічних систем. Діагностика та прогнозування відмов компонентів автоматизованих систем та механізмів (підсистем, елементів, міжсистемних та міжелементних зв'язків) у реальних експлуатації для пошуку та усунення причин відмов залишається актуальним завданням. Експлуатаційна надійність складних технічних систем, що відновлюються, та їх компонентів ефективно досягається стратегією експлуатації систем з контролем технічного стану на основі систем технічної діагностики. Зменшенню відмов та техногенних ризиків під час експлуатації складних технічних систем сприяє прогнозування їх технічного стану на основі діагностики. У статті наведено інтелектуальну систему, що функціонує з використанням розробленої моделі оцінки та прогнозування ризику відмов компонентів складної технічної системи на прикладі суднової енергетичної установки. Побудова моделі з урахуванням ієрархічних рівнів підсистем (компонентів), міжсистемних (міжелементних) зв'язків інтелектуальної системи ґрунтується на використанні апріорної інформації про відмови компонентів складних технічних систем. Модель пов'язує види технічного стану компонентів та діагностичні ознаки систем у вигляді ризику їх відмов. Використання апостеріорного висновку в байєсівських мережах довіри дозволяє визначати ризик відмов компонентів системи з урахуванням діагностичної інформації, що надходить, та інформації про відмови компонентів. З метою побудови та досліджень діагностичної байєсівської мережевої моделі інтелектуальної системи оцінки ризику відмов для системи діагностики та прогнозування технічного стану компонентів складної технічної системи, що складається з численних змінних, застосовано програмний продукт GеNIe. Отримані результати досліджень моделі оцінки та прогнозування ризику відмов компонентів складної технічної системи підтвердили можливість прогнозувати значення ризику відмов компонентів та системи загалом.en
dc.language.isoenen
dc.publisherДержавний університет «Одеська політехніка»en
dc.subjectcomplex technical systemen
dc.subjectcomponentsen
dc.subjectdiagnosticsen
dc.subjectpredictionen
dc.subjectfailure risk assessmenten
dc.subjectintelligent systemen
dc.subjectBayesian belief networken
dc.subjectскладна технічна системаen
dc.subjectкомпонентиen
dc.subjectоцінка ризику відмовиen
dc.subjectінтелектуальна системаen
dc.subjectбайєсовська мережа довіриen
dc.subjectдіагностикаen
dc.subjectпрогнозуванняen
dc.titleIntelligent system for assessing and forecasting the risk of failure of components of a complex technical systemen
dc.title.alternativeІнтелектуальна система оцінки і прогнозування ризику відмов компонентів складної технічної системиen
dc.typeArticleen
opu.citation.journalІнформатика та математичні методи в моделюванніen
opu.citation.volume12en
opu.citation.firstpage154en
opu.citation.lastpage161en
opu.citation.issue3en
Располагается в коллекциях:ІНФОРМАТИКА ТА МАТЕМАТИЧНІ МЕТОДИ В МОДЕЛЮВАННІ. Том 12, номер 3, 2022

Файлы этого ресурса:
Файл Описание РазмерФормат 
Itmm_2022_12_3_5.pdf603.21 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.