Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/14992
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorVostrov, Georgii-
dc.contributor.authorВостров, Георгій Миколайович-
dc.contributor.authorKhrinenko, Andrii-
dc.contributor.authorХріненко, Андрій Олегович-
dc.date.accessioned2025-03-03T06:18:53Z-
dc.date.available2025-03-03T06:18:53Z-
dc.date.issued2020-
dc.identifier.citationVostrov, G., Khrinenko, A. (2020). Mathematical modeling of formation processes of sequences with fractal elements of periodical chaotic dynamical system trajectories. CEUR Workshop Proceedings, Volume 2711, P. 93-106.en
dc.identifier.issn16130073-
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/14992-
dc.description.abstractThis paper considers problems that arise during number sequence generation based on nonlinear dynamical systems. Complex systems can depend on many parameters analysis and examination of one-dimensional maps was performed since these maps are dymanical systems. Dependence of iterative fixed points for nonlinear maps on the properties of functions and function domain numbers was investigated. Several approaches to randomness evaluation and, accordingly, methods for estimating the degree of randomness of a particular sequence were considered. The properties and internal structure of sequences obtained on the basis of nonlinear maps were also examined in accordance to their influence on the degree of randomness.en
dc.language.isoenen
dc.publisherCEUR-WSen
dc.subjectchaosen
dc.subjectpseudorandom sequencesen
dc.subjectnonlinear mapsen
dc.subjectprime numbersen
dc.titleMathematical modeling of formation processes of sequences with fractal elements of periodical chaotic dynamical system trajectoriesen
dc.typeArticle in Scopusen
opu.citation.journalCEUR Workshop Proceedingsen
opu.citation.firstpage93en
opu.citation.lastpage106en
Располагается в коллекциях:2020

Файлы этого ресурса:
Файл Описание РазмерФормат 
paper8.pdf655.69 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.