Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15241
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorKozlov, O.-
dc.contributor.authorKondratenko, G.-
dc.contributor.authorAleksieieva, A.-
dc.contributor.authorMaksymov, M.-
dc.contributor.authorTarakhtij, O.-
dc.date.accessioned2025-05-21T18:50:46Z-
dc.date.available2025-05-21T18:50:46Z-
dc.date.issued2024-
dc.identifier.citationKozlov O. Swarm optimization of the drone s intelligent control system: comparative analysis of hybrid techniques / O. Kozlov, G. Kondratenko, A. Aleksieieva, M. Maksymov, O. Tarakhtij // CEUR Workshop Proceedings, 3790, 2024. - 1-12.en
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/15241-
dc.description.abstractOver recent years, bioinspired swarm techniques have gained significant popularity for addressing realworld engineering optimization challenges. One promising application of these methods is developing and optimizing of intelligent systems, specifically fuzzy control systems. This paper examines research issues and performs a comparative analysis of bioinspired swarm methods for parameter optimization in fuzzy control systems. It compares various hybrid modifications of particle swarm optimization and grey wolf optimization techniques, specifically adapted for fuzzy system parameter optimization, against traditional search methods. As a case study, the paper uses the parametric optimization of a TakagiSugeno fuzzy control system designed for a quadrotor-type unmanned aerial vehicle (UAV). The simulation results confirm the effectiveness of the presented swarm bioinspired optimization techniques, taking into account both the performance of the UAV's fuzzy control system and the computational costs involved.en
dc.language.isoen_USen
dc.subjectBio-inspired optimizationen
dc.subjecthybrid swarm methodsen
dc.subjectparticle swarm optimizationen
dc.subjectgrey wolf optimizationen
dc.subjectfuzzy control systemen
dc.subjectunmanned aerial vehicleen
dc.titleSwarm optimization of the drone s intelligent control system: comparative analysis of hybrid techniquesen
dc.typeArticleen
opu.citation.firstpage1en
opu.citation.lastpage12en
Располагается в коллекциях:2024

Файлы этого ресурса:
Файл Описание РазмерФормат 
paper01.pdf732.97 kBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.