Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/1846
Полная запись метаданных
Поле DC | Значение | Язык |
---|---|---|
dc.contributor.author | Неврев, А. И. | - |
dc.contributor.author | Галчёнков, О. Н. | - |
dc.contributor.author | Неврев, О. I. | - |
dc.contributor.author | Галчонков, О. М. | - |
dc.contributor.author | Nevrev, A. I. | - |
dc.contributor.author | Galchonkov, Oleg | - |
dc.date.accessioned | 2017-04-06T10:38:00Z | - |
dc.date.available | 2017-04-06T10:38:00Z | - |
dc.date.issued | 2016 | - |
dc.identifier.citation | Неврев, А. И. Эффективность методов синтеза последовательностей со свойством "не более одного совпадения" / А. И. Неврев, О. Н. Галченков // Технологія та конструювання в електрон. апаратурі. - 2016. - № 2-3. - С. 33-36. | - |
dc.identifier.issn | 2225-5818 | - |
dc.identifier.uri | http://tkea.com.ua/tkea/2016/2-3_2016/pdf/06.pdf | - |
dc.identifier.uri | http://dspace.opu.ua/jspui/handle/123456789/1846 | - |
dc.description.abstract | Получено выражение для определения минимально возможной длины последовательностей со свойством «не более одного совпадения». Эта оценка использована для проведения сравнительного анализа эффективности известных регулярных методов построения синтезированных последовательностей. Показана высокая эффективность методов построения, основанных на теории расширенных полей Галуа. | en |
dc.description.abstract | Отримано вираз для визначення мінімально можливої довжини послідовностей з властивістю «не більше одного збігу». Цю оцінку використано для проведення порівняльного аналізу ефективності відомих регулярних методів побудови синтезованих послідовностей. Показано високу ефективність методів побудови, заснованих на теорії розширених полів Галуа. | en |
dc.description.abstract | The author presents an expression for determining the minimum possible length of binary sequences with «not more than one coincidence» property. Obtained low bound length value allows quantitatively estimating efficiency of any known synthesis methods for creation of binary sequences with «not more than one coincidence» property. The efficiency of known methods of creating binary sequences based on extended Galois fields theory is analyzed by comparing the obtained sequences length with a theoretical low bound estimation. The paper shows high performance of the known methods of creation of sequences with «not more than one coincidence» property based on extended Galois fields. | en |
dc.language.iso | ru | en |
dc.publisher | Odessa National Polytechnic University | en |
dc.subject | последовательность | en |
dc.subject | «не более одного совпадения» | en |
dc.subject | регулярные методы построения | en |
dc.subject | нижняя граница длины последовательности | en |
dc.subject | эффективность метода | en |
dc.subject | послідовність | en |
dc.subject | «не більше одного збігу» | en |
dc.subject | регулярні методи побудови | en |
dc.subject | нижня межа довжини послідовності | en |
dc.subject | ефективність методу | en |
dc.subject | binary sequences | en |
dc.subject | sequences with «not more than one coincidence» | en |
dc.subject | lower bound sequence length estimate | en |
dc.subject | Galois fields | en |
dc.title | Эффективность методов синтеза последовательностей со свойством "не более одного совпадения" | en |
dc.title.alternative | Ефективніість методів синтезу послідовностей з властивістю "не більше одного збігу" | en |
dc.title.alternative | Efficiency of sequence synthesis methods with the "not more than one coincidence" | en |
dc.type | Article | en |
opu.kafedra | Кафедра інформаційних систем | - |
opu.citation.journal | Технологія та конструювання в електронній аппаратурі | en |
opu.citation.firstpage | 33 | en |
opu.citation.lastpage | 36 | en |
opu.citation.issue | 2-3 | en |
opu.staff.id | a.i.nevrev@gmail.com | - |
Располагается в коллекциях: | Статті каф. ІС Технологія та конструювання в електронній апаратурі, № 2-3, 2016 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
06.pdf | 325.78 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.