
Increasing the Effective Volume of Digital
Watermark Used in Monitoring the Program Code

Integrity of FPGA-Based Systems

Kostiantyn Zashcholkin
Department of Computer Intelligent

Systems and Networks
Odessa National Polytechnic

University
Odessa, Ukraine

const-z@te.net.ua

Oleksandr Drozd
Department of Computer Intelligent

Systems and Networks
Odessa National Polytechnic

University
Odessa, Ukraine
drozd@ukr.net

Ruslan Shaporin
Department of Computer Intelligent

Systems and Networks
Odessa National Polytechnic

University
Odessa, Ukraine

rshaporin@gmail.com

Olena Ivanova
Department of Computer Systems

Odessa National Polytechnic University
Odessa, Ukraine

en.ivanova.ua@gmail.com

Yulian Sulima
Computer Systems Department

Odessa Technical College of the Odessa
National Academy of Food Technologies

Odessa, Ukraine
mr_lemur@ukr.net

I. INTRODUCTION
At the moment a considerable share of hardware of the computer and control digital systems is based on programmable

devices. One of the main reasons of preference of the very programmable devices is that there is the possibility to modify their
operation during all the life cycle. Due to this possibility a number of typical tasks, which can appear at the different stages of
life cycle of the computer or control system, is solved simply enough (as compared to nonprogrammable devices). We can
refer to such kinds of tasks the following ones: a) functioning faults elimination detected in the course of the device operation;
b) expansion and changing the set of functions, which are provided by the device; c) functioning optimization of the device.

However the possibility to modify the program code of programmable devices generates the problem of provision of this
program code integrity. The potential accessibility to the program code rewriting function is the basis for vulnerability, which
allows to illegitimately bring modification to the program code. The presence of legitimate program code modification in the
process of the device operation permits to mask a malicious modification presenting it as a part of a legitimate one. The
program code integrity violation of devices, entering the composition of systems of both safety-critical and mass usages,
creates the excessive risk with unacceptable consequences. So the safety of systems, in which the programmable devices are
included, cannot be ensured without the solution of problem of the program code integrity provision.

In the given paper a problem of the program code integrity provision of one of the widely used classes of programmable
devices – FPGA chips (Field Programmable Gate Array) is considered. The FPGA chips are a set of programmable basic
calculating units, the links between which are ensured by the programmable system of commutation. The natural parallelism of
the computing tasks solution with the help of FPGA chips creates their (chips) advantage in performance characteristics as
compared to microprocessors.

In spite of the presence of embedded mechanisms of the program code protection from rewriting in many FPGA-based
systems there are the bypass ways of such kind of protection allowing to enter the illegitimate modification in the program
code. By virtue of this the most popular approaches to the provision of the program code integrity of FPGA-based components
is a combination of processes of access restriction to the program code and integrity monitoring. The integrity monitoring is
traditionally based on the usage of extra monitoring data units allowing to make the conclusions about the code integrity.

II. LITERATURE REVIEW AND GOAL OF THE PAPER
The most popular approaches to the program code integrity monitoring used in practices have become the ones, which use a

hash sum. For the program code information object a hash sum is calculated with the help of the set hash function. This hash
sum is considered further to be a standard one. A standard hash sum is in some way matched with the program code information
object or joins it. Further if checking the program code integrity is to be executed the recalculation of information object hash
sum is implemented. The comparison of the standard and newly calculated hash sum permits to confirm the integrity or detect its
violation.

One of the substantial constituents of the integrity monitoring efficiency (in the point of counteraction to the attempts to
bypass monitoring) is a way and location of the standard hash sum storage. In using the traditional approaches to the integrity
monitoring the following ways (or their variations) of storing the standard hash sum are applied.

1) A standard hash sum is stored separately from the program code information object in some centralized database. The
main disadvantage of this way of storing is the complexity of the database protection from information leakage. The mass
leakage of information from database with hash sum (which is a quite frequent event as the practice shows) compromises all

mailto:rshaporin@gmail.com
mailto:en.ivanova.ua@gmail.com
mailto:mr_lemur@ukr.net

the systems of integrity monitoring, which this database provides. Even under the conditions of extra encryption of the standard
hash sum the access to its encrypted values creates a potential chance of spoofing and bypassing the integrity monitoring.

2) The standard hash sum is stored together with the program code information object in the FPGA configuration memory.
The disadvantage of this way is conditioned, firstly, with the evidence for an outside surveillance that the integrity monitoring
of the given information object is carried out, and secondly, that the standard hash sum is accessible and this makes the
attempts to spoof it easier.

3) The standard hash sum is included in the program code information object and stored as its constituent. The hash sum
detection inside the information object is not of great difficulty because the hash sum is not distributed about the information
object but is centrally stored in its structure. By virtue of this the given way has the disadvantages similar to the previous one.

Thus the described ways of storing a standard hash sum potentially create the vulnerability, which can become a cause to
attempt to spoof the hash sum with the aim to hide the integrity violation.

A perspective approach to integrity monitoring is the standard hash sum embedding into the program code information
object in the form of a digital watermark. Such kind of approach masks from an outside surveillance the very fact of the
integrity monitoring implementation. The digital watermark imbedding does not change the size of the program code
information object. Moreover as a result of the digital watermark embedding the operation of programmable device, which
functioning is set by the program code, is not modified. These features of the digital watermark are the results of usage of the
special equivalent conversion with respect to program code elements. For embedding the digital watermark into FPGA an
equivalent conversion of program code of the series-connected LUT (Look Up Table) basic calculating units is used. Wherein
the system of links between LUT units as well as the operation, energy characteristics and performance of the device are not
changed.

The digital watermark extraction from the FPGA program code is possible if steganographic key is available. The key
determines the rules of the digital watermark bits placement in the LUT unit set.

The peculiarity of integral monitoring, which is carried out with the help of the digital watermark, is the necessity to
recover an initial state of the program code information object. At the moment of monitoring execution the digital watermark
(containing hash sum) is to be extracted from information object, and the information object itself is to be recovered in the
state, in which it existed prior to embedding the digital watermark (initial state). Such recovery is necessary because the
standard hash sum is calculated for the initial state of information object. Embedding the digital watermark changes this state.

To ensure the initial state recovery of the program code information object a compression-based approach is used. The bit
values M = <m1, m2, … , mn> (values of the specify bits of the LUT units program code) of information object, which are
along the embedding path of digital watermark, are combined in a bit sequence. This bit sequence is subjected to the lossless
compression procedure. The compressed bit sequence Mcom together with service data S (which contains the fields length of the
digital watermark) and the standard hash sum creates the digital watermark DWM. This digital watermark is embedded into the
place of the bit sequence M by the equivalent conversion. Thus the standard hash sum size in the digital watermark cannot
exceed value (1).

 LHash = LM – LMcom – LS (1)

The size of service data S field is fixed. On this basis the size LHash is dependent on: the number of LUT units (the sequence
M length), in which the digital watermark embedding is executed; the applied compression method; the content of the bit
sequence M. Wherein the value LHash can be learnt after indicating the location of watermark embedding and bit sequence M
compression.

In case if the amount of bits necessary for storing the standard hash sum exceeds the value LHash a situation arises when the
information object cannot be finally prepared for integrity monitoring. In this case a hash function, which gives a hash sum
with less number of bits, should be chosen. If such kind of hash-function change is inaccessible in accordance with the
monitoring conditions one should give up monitoring with the help of the digital watermark. On this basis we can constant the
following issues: a) field size limitation of the monitoring digital watermark, which is dedicated for storing the standard hash
sum; b) instability of this size and possibility to learn it only at the final stages of the information object preparation for
integrity monitoring.

The goal of the given paper is to increase the effective volume (which is intended for storing the monitoring hash sum) of
the digital watermark as compared to the integrity monitoring methods using compression for the recovery of information
object state.

III. THE INTEGRITY MONITORING METHOD PROVIDING THE INCREASED EFFECTIVE VOLUME OF THE DIGITAL WATERMARK
We offer a method of the FPGA program code integrity monitoring, which allows like all compression-based methods:

• to save the initial state of the FPGA program code information object (at the stage of preparing the information object
for monitoring);

• to execute the initial state recovery of the FPGA program code information object and the digital watermark extraction
simultaneously (at the stage of integrity monitoring implementation).

However wherein the proposed method allows providing the larger effective volume of the digital watermark (the volume
intended for the hash sum monitoring storage) than the one (volume) provided by compression-based methods.

That is why the initial state recovery by means of the preliminary preparation of the FPGA program code information
object is offered. The proposed method uses some Wong’s method ideas as a base. According to the method offered by Wong
a fragile digital watermark is embedded into a bitmap image. The property of the digital watermark fragility in the method by
Wong makes possible the image integrity monitoring. This method also requires to bring some bits in the values of image
pixels to the predetermined state.

The proposed method in the given paper differs from the one by Wong in the following aspects.

The proposed method is oriented to the digital watermark embedding into the FPGA program code and permits only the
equivalent conversion of basic units values of the information object. But the method by Wong is oriented to the digital
watermark embedding into a multimedia information object and allows the distortion of the basic unit values of this object.

The method by Wong requires to mandatorily bring all basic unit values of the information object to predetermined state.
The method offered in the given paper requires to bring only the basic unit values, which are along the embedding path of the
digital watermark, to the predetermined state.

The method by Wong fixes the least significant bits as target embedding bits (this is conditioned by the peculiarity of
multimedia information objects the method by Wong is oriented to). The proposed method gives the possibility to use equally
any of the bits of the basic units (LUT units) program code of information object.

The method by Wong indicates only a single rule how to bring the target bits to the predetermined state – their setting in
value 0. The proposed method allows to use any determinate rules (described in the corresponding steganographic key
component) to bring the target bits to the predetermined state.

To formulate the principles of the proposed method the following notations and definitions are introduced.

Let L = {LUT1, LUT2, … , LUTp} is a set of LUT units of FPGA-based device, in the program code of which the
monitoring digital watermark is embedded.

On the basis of the rules indicated by steganographic key an ordered set of LUT units, which are along the embedding path
of the digital watermark EmbPath = <l1, l2, … , ln>, is formed from this set. In the course of embedding the digital watermark
bits are directly embedded into the program codes of the EmbPath LUT units.

Each of the units li ∈ EmbPath, where i=1…n contains k-bit program code Pi, respectively. In each of the program codes
Pi one of the bits di of monitoring digital watermark can be embedded with the help of equivalent conversion.

To each of the units li ∈ EmbPath (which is along the embedding path) corresponds one bit mi ∈ Pi. This bit of program
code Pi can be used for embedding one bit of the digital watermark. The correspondence between li ∈ EmbPath and mi ∈ Pi is
set by rules described in steganographic key. Below the bits mi will be called the target bits of embedding.

The basic theoretical principles of the proposed method are as follows.

The first principle of the method: the initial state recovery of FPGA program code information object is provided on
account of the preliminary preparation of this information object. The preparation is carried out prior to embedding the digital
watermark into information object. The preparation lies in bringing the target bits of embedding to some predetermined state.
The state, which these bit values are brought to, is indicated by rules including in the steganographic key structure.

The second principle of the proposed method: bringing the target bits to the predetermined state (set by steganographic key)
is performed with the help of the equivalent conversion similar to those, which are used for the digital watermark embedding.

The third principle of the proposed method: the digital watermark within the framework of the proposed method contains
only the monitoring hash sum. There is no information for initial state recovery of information object in it. The lack of
necessity to save this information is conditioned by the fact that the initial state of information object is recovered according to
the rules described in steganographic key.

The fourth principle of the proposed method: steganographic key (which is used in embedding and extracting the digital
watermark) contains the rules for bringing the target bits to the predetermined state. These rules regulate both values
themselves (fixed or changed according to some law) and their location in the space of FPGA program codes of LUT units.

To provide this principle a component, which describes the rules of bringing the target bits to the predetermined state, is
offered to include in steganographic key:

PD-rule = <value, location>,

where value ∈ {fixed-value, value-pattern, random-value-rule}; location∈{fixed-location, location-pattern, iteration-location-
rule, random-location-rule}.

Component PD-rule consists of two elements: element value indicates a rule of the target bits value formation in the course
of their bringing to the predetermined state; element location sets the target bits location in the space of LUT units program
codes.

Element value determines three possible ways of the target bits value formation: fixed-value is fixed value 0 or 1 for all the
target bits; value-pattern is the values, the changes of which are described by some regular pattern; random-value-rule is the
values, the changes of which are set by a rule based on pseudo-random number sequence.

Element location determines four possible ways of specifying the target bits location: fixed-location is the location in bits,
which have one and the same number in all LUT units program codes; the rest three ways set the location in bits, number of
which changes from unit to unit in accordance with some rule; location-pattern is a regular pattern of the bit number change;
iteration-location-rule is an iteration rule of the bit number change; random-location-rule is a rule of the bit number change
based on the pseudo-random sequence.

The proposed method is a sequence of stages which are performed in preparing the FPGA program code information object
for integrity monitoring, as well as the ones, which are executed in the course of the monitoring itself.

The preparations of FPGA code information object for integrity monitoring.

Stage 1. According to the rules included in the steganographic key components the units, which are along the embedding
path, are chosen from the set of LUT units. These units create the ordered sequence EmbPath = <l1, l2, … , ln>.

Stage 2. In accordance with the steganographic key component location ∈ PD-rule the ordered sequence of target bits
M = <m1, m2, … , mn> is formed wherein each target mi is a bit of the LUT unit li program code.

Stage 3. In accordance with the steganographic key component value ∈ PD-rule the binary values sequence
A = <a1, a2, … , an> is formed. These values are considered to be the initial ones for target bits of the digital watermark
embedding.

Stage 4. With the help of the equivalent conversions the target bits mi ∈ M replacement with the initial values ai ∈ A is
performed. After this FPGA program code information object is considered to be brought to the initial predetermined state.

Stage 5. For the program code information object a monitoring hash sum is calculated. This hash sum is calculated with the
help of a hash function, set by steganographic key.

Stage 6. The obtained hash sum is embedded into the target bits of the FPGA program code information object in the form
of digital watermark. The embedding is performed according to the traditional methods of the digital watermark embedding
into FPGA program code.

The executions of information object integrity monitoring.

Stage 1. In accordance with the rules determined by the steganographic key components the units, which are along the
embedding path, are chosen from the LUT units set.

Stage 2. According to the steganographic key component location ∈ PD-rule an ordered sequence of target bits is formed.
At the stage of information object preparation the digital watermark is embedded into these bits.

Stage 3. The digital watermark, which contains the monitoring hash sum, is extracted from these bits.

Stage 4. An action analogous to the one, which is performed at Stage 3 in preparing the information object for monitoring,
is carried out: in accordance with the steganographic key component value ∈ PD-rule the binary values sequence
A = <a1, a2, … , an> is formed.

Stage 5. The initial state recovery of the program code information object is performed. To do this the target bits mi ∈ M
replacement with the initial values ai∈A is implemented with the help of the equivalent conversion.

Stage 6. For the program code information object obtained at Stage 5 the monitoring hash sum is calculated. This hash sum
is calculated with the help of a hash function, set by steganographic key.

Stage 7. The comparison of hash sum extracted from the information object at Stage 3 and the one calculated at Stage 6 is
performed. If these hash sums coincide the information object integrity is considered to be confirmed. Otherwise the integrity
violation is fixed.

IV. THE PROPOSED METHOD AND EXPERIMENT DISCUSSION
The proposed method efficiency in the point of effective volume increase of the digital watermark is as follows. The

traditional methods of integrity monitoring (which are based on the digital watermark usage) apply the compression to save the
initial information object state. These methods permit to use only a small part (1) of the digital watermark volume for storing
the monitoring hash sum. This reason does not allow for in some cases the traditional methods to provide the saving of hash
sum with a size necessary for monitoring. As to the method proposed in the presented paper it gives the possibility to use all
the available volume of the digital watermark for storing the hash sum.

To compare the offered method to the traditional ones an experiment was made. The experiment was made for five FPGA
projects of different volume. The synthesis of these projects was implemented in CAD environment Intel (Altera) Quartus for
target FPGA chips Intel Cyclone IV.

For all the five projects the embedding path formation was performed with the help of one and the same steganographic
key. Then the authors indicated what size of the hash sum is which can be provided by a traditional compression-based method
of integrity monitoring. The sequence of target bits was formed with further performing the compression of this sequence.

Then according to equation (1) the maximal possible size of hash sum was calculated. We also indicated which of the most
popular hash functions can provide a hash sum that could fit to this possible size.

One can see that the traditional method does not give the possibility to save a suitable size hash sum (obtained with the help
of some high-usage hash function) for projects 1 and 2. This is connected with relatively small total amount of LUT units in
these projects. As a result we have small amount of LUT units placed along the embedding path (the total size of the digit
watermark) and, consequently, too small length of the hash sum field.

Projects 3 and 4 have more amount of LUT units than the ones 1 and 2. However in applying the traditional method the
hash sum field size for these projects permits to use only a hash sum obtained with the help of hash function MD5 (the size is
128 bits).

For project 5 the traditional method gives the possibility to use a hash sum obtained with the help of both hash function
MD5 (the size is 128 bits) and hash function SHA1 (the size is 160 bits).

The method offered in the given paper provide the effective volume (for the hash sum storage), which equal to the amount
of LUT units placed along the embedding path. Thereby the proposed method allows saving a hash sum in the digital
watermark for all projects, which participate in the experiment (Table 1). For those projects, for which the traditional method
provides the minimum possible size of the hash sum field, the proposed method permits to use a hash sum of the larger size.

V. CONCLUSIONS AND DIRECTIONS OF THE FURTHER RESEARCH
A method of FPGA program code integrity monitoring based on the digital watermark usage is offered in the paper. The

method is different from the similar ones existing in the literature with the fact that it does not apply the compression to save
and recover the initial information object state at the stage of monitoring. To provide the recovery of initial information object
state within the framework of the proposed method the preliminary bringing of information object to a predetermined state, set
by steganographic key, is carried out. For performing the integrity monitoring after extracting the digital watermark the
repeated bringing of information object to the specified predetermined state is carried out.

The experimental research of the proposed method has shown its efficiency (as compared to the traditional methods) in the
point of provision of the effective digital watermark volume sufficient for saving the hash sums obtained with the help of the
most widely used hash functions.

We assume that perhaps the usage of the proposed method reduces (as compared to the traditional compression-based
methods) the program code information object resistance to stegoanalysis. We assume that perhaps the usage of the proposed
method reduces (as compared to the traditional compression-based methods) the program code information object resistance to
stegoanalysis. Here we mean only the process of detection of the digital watermark presence in FPGA program code. But the
question if the information object resistance to stegoanalysis becomes less (and if it decreases then to what extension) requires
extra research. If as a result of this research we come to the conclusions that the resistance really reduces then the technique of
the following compromise variant choice is to be created: what is more important – to use a hash sum with more amount of bits
(with larger cryptographic secure) or to decrease the probability of detection of the digital watermark in the program code.

	I. Introduction
	II. Literature review and goal of the paper
	III. The integrity monitoring method providing the increased effective volume of the digital watermark
	IV. The proposed method and experiment discussion
	V. Conclusions and directions of the further research

