
Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.03.2021.6 271

DOI: https://doi.org/10.15276/aait.03.2021.6

UDC 004.75

Smart contract sharding with proof of execution

Igor E. Mazurok1)
 ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com. Scopus ID: 57192064365

Yevhen Y. Leonchyk1)
 ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net. Scopus ID: 57192064365

Oleksandr S. Antonenko1)
 ORCID: https://orcid.org/0000-0001-9680-3446; asantonenko@gmail.com. Scopus ID: 17433258300

Kyrylo S. Volkov1)
 ORCID: https://orcid.org/0000-0002-7705-8994; cyrillicw@gmail.com

1) Odessa I. I. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ABSTRACT

Nowadays, Decentralized Networks based on Blockchain technology are actively researched. A special place in these

researches is occupied by Smart Contracts that are widely used in many areas, such as Decentralized Finance (DeFi), real estate,

gambling, electoral process, etc. Nevertheless, the possibility of their widespread adoption is still not a solved problem. This is

caused by the fact of their limited flexibility and scalability. In other words, Smart Contracts cannot process a large number of

contract calls per second, lack of direct Internet access, inability to operate with a large amount of data, etc. This article is devoted to

the development of the Sharding Concept for Decentralized Applications (DApps) that are expressed in form of Smart Contracts

written in WebAssembly. The aim of the research is to offer a new Concept of Smart Contract that will increase the scaling due to

applying the idea of Sharding that allows avoiding doing the same work by all nodes on the Network and flexibility due to the

possibility of interaction with the Internet without special Oracles. During the research, decentralized 0ata storages with the

possibility of collective decision-making were developed. The scheme of forming Drives that assumes that each Contract is executed

by a set of randomly selected nodes that allows avoiding cahoots and prevents Sybil Attack is offered. Such an approach allowed

using Drives as a base layer for Smart Contracts. Moreover, Drives can be used as a standalone solution for decentralized data storing.

The features of coordination of results of Contracts execution that greatly expands the possibilities of the Contracts compared to

Ethereum Smart Contracts, and, in particular, allow the Contracts to interact with the Internet are described. The Rewards Concept

that incentivizes all nodes that honestly execute the Contracts, unlike other systems where only the block producer is rewarded, is

developed. It is based on the specially developed Proof of Execution – a special algorithm that allows detecting all the nodes that

honestly execute the Contracts. In order to make the Proof of Execution more compact, an extension for the existing discrete

logarithm zero-knowledge proofs that makes it possible to consistently prove knowledge of dynamically expanding set of values with

minimal computational and memory complexity so-called Cumulative Discrete Logarithm Zero-Knowledge Proof is developed. Thus,

in this article, the new concept of Smart Contracts Sharding empowered by economic leverages is researched. The main advantages

of the proposed approach are the possibility of interaction with the Internet and big data processing. Moreover, the mechanism of

incentivizing nodes to honestly execute the Smart Contracts is developed. In addition, the Cumulative Proof that is necessary for the

cryptographic strength of the specified mechanism is offered and its correctness is proven. The obtained results can be used to

implement Smart Contracts in decentralized systems, in particular, working on the basis of Blockchain technology, especially in the

case of demanding high bandwidth and performance.

Keywords: Proof of execution; cumulative proof; sharding; smart contracts; zero-knowledge proof

For citation: Mazurok I. E., Leonchyk Y. Y., Antonenko O. S., Volkov K. S. Smart contract sharding with proof of execution. Applied Aspects

of Information Technology. 2021; Vol. 4 No. 3: 271–281. DOI: https://doi.org/10.15276/aait.03.2021.6

1. INTRODUCTION, FORMULATION

OF THE PROBLEM

The recent years the decentralized and

distributed networks are actively studied and

problems that arise in such networks are researched

[1, 2], [3]. Special attention is paid to Smart

Contracts on the base of blockchain.

For the first time the idea of Smart Contracts

was offered by Nick Szabo in 1994 [4]. They

became widespread after the emergence of the

Ethereum blockchain network that, in fact, provides

an environment and infrastructure for execution

© Mazurok I., Leonchyk Y., Antonenko O.,

 Volkov K. 2021

Smart Contracts written in Solidity. Since then,

contracts have been widely used in many areas:

finance (lending [5], exchanges [6]), guaranteeing

property rights [7], etc.

Despite its innovation and flexibility, Ethereum

Smart Contracts have a number of disadvantages,

including those related to the network architecture.

Among the main disadvantages can be noted low

bandwidth – the Ethereum is not able to process a

large number of contract calls per second, lack of

direct Internet access, inability to operate with a

large amount of

data, etc. They are, in particular, called by the fact

that the Smart Contracts are executed by the all

blockchain nodes.

https://doi.org/
mailto:leonchik@ukr.net
https://doi.org/

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

272 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

The Ethereum and similar systems offer the

algorithm of encouragement of Smart Contract

Execution that is developed at the Blockchain

Consensus Level based on Proof of Work and

assumes that only the producer of the block is

rewarded. Such an approach does not incentivize the

nodes of the Network to validate correctness of the

execution.

Thus, the following problem arises: to develop

an environment for Smart Contracts Execution that:

– supports Sharding – dividing the Work among

the nodes of the Network that assumes that each

Contract is executed by a large enough set of nodes,

whose size is significantly less than the whole

number of nodes in the Network

– allows the Contracts to interact with Internet

and other Contracts

– incentivizes the nodes to honestly execute the

Contracts

The last point assumes that the nodes must be

rewarded for their work. Therefore it is necessary to

have the possibility to determine the nodes that have

indeed executed the contract. Since the results of the

execution must be public, then it is impossible to

perform such determination via checking possession

the results of the execution. That’s why the

algorithm that allows determining such nodes must

be developed.

2. LITERATURE OVERVIEW

All the mentioned problems significantly

decrease the possibility of using the existing solution

in wider spectrum of cases. That’s why they are

actively researched.

In particular, Ethereum is actively working on

Ethereum v2.0 [8] that aims to introduce Sharding

that will allow to significantly increase the number

of contract calls executed per second and the main

idea of which is dividing the network into subnets

called shards and parallelization of work among

them.

In [9] the overview of Ethereum Layer 2

Scaling: Plasma, ZK-Rollups and Optimistic Rollups

– is given. The main idea of the solutions is to take

the most operations off-chain, in particular, via

building child chains and registration of some events

in the parent chain. Nevertheless all of the proposed

ideas require either centralization, or significant

decrease in functionality, for example, the

possibility of using Contracts only for tokens

transfers.

Hyperledger offers its solution for Private

Networks called ChainCode [10]. In this solution

similar ideas can be traced: only some nodes of the

Network execute the code. Moreover, nodes are not

the Harvesters – the nodes that produce the blocks.

Zero-Knowledge Proofs [11, 12] is a method

used in cryptography for proving possession secret

information to a Verifier without providing it any

additional information about the secret except for the

fact that the Prover knows it.

The Zero-Knowledge Proofs are actively used

and researched in blockchain area. A special

attention is paid to non-interactive protocols – those

ones that do not suggest sequential messaging

between the Prover and the Verifier but assume that

the Verifier is able to check possession of the secret

information after receiving a single message from

the Prover.

The Proofs have become especially popular due

to the development of blockchain technologies.

The most wide used algorithms are zk-SNARK

[13]. This is a class of Zero-Knowledge Proofs that

possesses a number of additional properties

including succinct proof property that requires the

proof size to be a constant value.

Most often these algorithms are used to prove

the validity of token transfer transactions. In

particular, such a technology is used by ZCash [14].

3. THE AIM AND OBJECTIVES OF THE

RESEARCH

The aim of the research is to develop a new

architecture of smart contracts that will make

execution more flexible, scalable and increase

incentives for nodes to work honestly.

Research objectives:

1. Offer a new concept of Smart Contracts

Sharding with the possibility of interaction with the

Internet.

2. Develop the mechanism of incentivizing

nodes to honestly execute the Smart Contracts

3. Offer a new cryptographic protocol that

allows proving the possession of expanding

sequence of discrete logarithms. The protocol should

allow proving without knowledge which part of the

sequence has already been proved by the moment of

new proof generation.

4. DRIVE

In order to introduce the offered concept of

Smart Contracts we should preliminary introduce

Drives. We use Drive concept to store both Smart

Contract Code and Smart Contract Data. Each Drive

has its Owner – user of Smart Contact System,

which should upload Smart Contract Code and

initial data for Smart Contract on stage of

Deployment of Smart Contact.

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 273

The Drive is a decentralized storage served by a
set of Network nodes called Executors. The simplest
idea is to store all Drives information on the same
set of Executors. But then we will not obtain
sharding concept and we obtain system which is in
many ways similar to Etherium 1.0 system. So we
offer to store a Drive on a proper subset of all
Executors. Only this subset Executors will run Smart
Contract located on this Drive. Since Drive is not
stored by all Network participants, its size can be
quite large. This allows storing arbitrary information
and process large files including databases.

All Executors of some Drive store the same
information about Drive content which is negotiated
and approved on the blockchain using the
Multisignature mechanism. The essence of this
approach is that changing the contents of the Drive
is made via releasing the transaction that is signed
with the supermajority of the Executors. This allows
to work in standard assumptions for Byzantine Fault
Tolerance [15] system that assume that there is less
than one third of fault Replicators on the Drive.

The possibility of collective decision-making
via Multisignature mechanism favorably
distinguishes our solution from other decentralized
storages [16, 17] which either does not provide the
possibility of collective decision-making at all, or
they are carried out in a centralized way.

Since the total size of information on Drive can
be pretty large, it is logical to store in blockchain
transactions not all the content of Drive, but some
aggregate information of it, for example, hash of all
Drive content.

In fact such Drives are analogs of Shards in
other Networks but with the clarification that each
Executor can be a member of several Drives.

The common problem for Sharding systems is
the procedure of assigning nodes to Shards: if each
node can select the wished Shard by itself, then the
performing of Sybil Attack becomes much easier: it
is sufficient to seize a single Shard in order to put
under threat the functionality of the entire Network.

In order to prevent the possibility of the attack
and avoid cahoots, Executors on the Drives are
assigned randomly.

To summarize our thoughts, the Drives can be
used on one’s own, like decentralized analogue of
cloud storage service, like Google Drive or
Dropbox. But using them as a base layer for Smart
Contracts is the most interesting.

5. SMART CONTRACTS

In this section we introduce the concept of Smart
Contracts – the more advanced analogous of
Ethereum Smart Contracts.

Smart Contract is a special kind of
Decentralized Application in a form of software

product. The Contract code is stored on a separate
Drive and is public that means that everybody is able
to download the code and make sure there are no
vulnerabilities. The code is immutable that
guarantees that all the terms of an electronic contract
will not be changed over the time.

The Smart Contracts are written in
WebAssembly [18] and executed by Executors.

Usage of WebAssembly allows:

 avoiding development of own programming
language and virtual machine like it is made in
Ethereum

– lowering the entry threshold for developers

5.1. Contract deployment

At first, the creator of a Contract need to upload
source code of the Contract and all the data needed
by the Contract to some drive. We call this process
Contract deployment. On this stage Contract creator
can modify the source code and the data on Drive as
he wants, but after finishing of deployment process,
he loses direct control on both source code and data,
since all data on Contract Drive can be modified
only through Contract code execution. This is used
to protect users of Contract against abuse by the
creator of the Contract (for example, in case of
online auction, the initiator of the auction cannot
cancel it after start, or change the auction conditions
or terms).

The results of successful or unsuccessful
deployment of the Contract, as well as initial state of
the Drive after deployment are fixed by a
corresponding transaction in the blockchain.

Thus, the Contracts code is immutable after
finish of deployment process, so the developers must
carefully analyze it before uploading, in particular,
using the method proposed in [19].

5.2. Contract runs

The Contract run is initiated via posting a

corresponding transaction into the blockchain. We

will call a concrete request of the Contract run as a

Call.

The Call starts to be executed as soon as the

block with the corresponding transaction is finalized.

It allows guaranteeing that all the Executors run the

Call in the same order.

The transaction contains all necessary

information for the Call Execution including the

arbitrary parameters. It allows locking tokens on

behalf of the Contract.

5.3. Interaction with data

The Smart Contracts can interact with all the

files on their Drives. The interaction includes

reading, modifying, and removing any files.

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

274 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Interaction with the blockchain is limited. The

limitation is caused by the fact that Contracts are

executed in parallel to the blockchain so different

Executors may have different states of the

blockchain by the moment of execution. The similar

problem is considered by Hyperldger [10].

They offer introducing two sets:

 Read Set - a list of unique blockchain keys

and their committed version numbers that are read

during the execution.

– Write Set - a list of unique blockchain keys

modified during the execution.

The execution is then considered as a successful

one if the values mentioned in the Read Set have not

been modified during the execution.

Nevertheless, we refuse such an approach and

prefer limiting the information accessible during the

execution because of the following disadvantages of

Read Set:

– modification of some information in the

blockchain that was used during the execution does

not always mean incorrect contract execution: for

example, if the balance of an account has increased,

then it should not be a block for transferring money

from the account initiated with the contract;

 a malefactor can maliciously modify some

values in order to fail the execution.

The limitation consists in the fact that the

Contract can interact only with immutable part of

the blockchain: blocks and transactions and not the

state.

Due to the approach of approving the Execution

Results the Contracts are able to interact with the

Internet. Despite reading from Internet and Writing

to Internet are almost indistinguishable from the

network point of view, it should be noted that since

the Contract is executed by a couple of Executors,

writing to the Internet can have unexpected

consequences so in fact the interaction with the

Internet is limited with the possibility of

downloading data.

5.4. Interaction of several Contracts

Typical Ethereum Smart Contract calls other

Smart Contracts during its execution. That’s why it

is necessary to provide Contracts with the similar

possibility of interacting with each other. The

difficulty of the problem is explained by the fact that

Contracts are run in parallel independently of each

other so different Executors of both Contracts may

receive different results.

We offer the next solution of the problem:

– Running of a Smart Contract by another

Smart Contract can be performed only via posting

the corresponding transaction to the blockchain

– Obtaining information from a Contract can

be performed only as downloading a file with known

hash.

Such an approach allows guaranteeing that all

the Executors always execute the same actions and

receive the same information.

5.5. Approving the Execution Results

After the Call is executed, the Executors have to

agree on the results of its execution and approve

them in the blockchain via posting a special

transaction.

Since during its work, the Contract can modify

data stored on its Drive and issue transaction to the

blockchain, then the process of agreement on the

execution results comes down to the process of

agreement on the final contents stored on the Drive

and the contents of the issued transaction. In order to

decrease network load a typical solution is

agreement on hashes of the corresponding values.

Since the Contracts have access to the Internet,

the situation when different executors receive

different results can arise. Despite the fact that it

obviously indicates that the contract does not work

properly, such a situation must be processed in

normal mode.

Thus, the procedure of agreement should

support the next scenarios:

 The supermajority of Executors agrees on

the same results of Contract execution.

 There does not exist a supermajority of

Executors that agrees on the same results of Contract

execution.

In the first case the Contract is executed

successfully and the results on which an agreement

has been reached can be considered the results of the

Contract execution. Such a task can be solved by

any Byzantine Fault Tolerance consensus or via

Multisignature mechanism.

The second case is more difficult since it is not

possible to find out whether the desired

supermajority exists until all the Executors express

their opinion. The consensuses that are able to solve

such problem usually use the concept of time [20]. It

allows avoiding endless waiting for the responses

from all the nodes, considering that the nodes that

have not sent a response in the allotted time will

never send it.

A feature of the problem being solved is that the

Executors that the process of agreement is not

regular like accepting blocks in the blockchain but

takes place only when the Executors complete their

work. Due to different computing power of

Executors, network lags, etc. the moments when the

executions are finished can differ a lot.

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 275

Taking into all the above we offer the next

solution of the problem based on the Multisignature

mechanism:

1. As soon as the Executor completes the

execution, it sends signed opinion about the results

of the execution to all other Executors at time 𝑇

2. If at some moment of time the Executor

collects necessary number of signatures for the same

execution results, it means that the agreement is

reached and all the corresponding signatures are sent

to the blockchain.

3. If by time 𝑇 + 𝑡 , where 𝑡 is the maximum

waiting time the results of the execution are not

approved in the blockchain, the Executor sends

signed opinion about the unsuccessful execution to

all other Executors.

4. As soon as the Executor collects necessary

number of signatures for unsuccessful execution,

they are sent to the blockchain.

Since we assume that the supermajority of

Executors is honest, in the worst case they all sooner

or later will agree on the unsuccessful results of the

execution. Since each Executor uses its local time,

there is no need to synchronize time among the

Executors and the algorithm works properly even if

Executors complete execution with a very large time

difference.

That’s why we offer using a so-called two-

phasic approving:

1. Executors try to approve the successful

results of the execution using Multisignature

mechanism described above.

2. If the results are not approved after

expiration of a time limit, the Executors try to

approve the unsuccessful results of the execution

In the worst case, when the Executors receive

different results of the Execution, they are always

able to cope with the situation and continue working

in a regular mode.

The approach described above allows solving

problem of interacting with the Internet: the

information downloaded from the internet will be

applied only if the Executors will be able to agree on

the final results of the execution. At the same time,

problems with interaction on the one Drive do not

influence other Drives and Smart Contracts.

5.6. Rewarding the Executors

The Executors perform their work in order to

receive rewards. The amount of the reward is

proportional to the amount of work executed. As is

other systems, this amount is measured as the

number of opcodes executed by the WebAssembly

Virtual Machine.

The algorithm of rewards accrual should satisfy

the two given properties:

 If the Executor has honestly executed the

Smart Contract, it must receive the reward.

 If the Executor has not executed the

Contract, it must not receive the reward.

Malicious Executors may try to lie whether they

have executed the contract in order to receive

improper gain.

6. PROOF OF EXECUTION

The main idea of Proof of Execution is that

those Executors who honestly execute the Contract

Calls possess some information that is not available

for other Executors. This allows them to prove the

fact they have executed the Contract via proving the

knowledge of this information. Such proof must be

made in a Zero-knowledge proof manner in order to

prevent disclosure of secret information.

6.1. Secret Information Generation

In this section we consider the ways of secret

information generation. Since possession of the

information proves the execution of the Contract

Call, this information should be a digest of execution

log. Thus, the process of the information generation

can be divided into two parts – Execution Log

Generation and Execution Log Information.

6.1.1. Execution Log Generation

The purpose of Execution Log Generation is to

create such an array that reflects the process of the

Call Execution. We offer two ways of the array

creation: Standard and Custom. They are not

mutually exclusive and can be used together.

Since Smart Contracts are executed in a Virtual

Machine, the Contract Call is in fact an ordered list

of opcodes, each of which has its own id and

parameters oi. This allows us to introduce the next

representation of the array a = o1, … , on . We call

this approach a Standard one. The Standard

Generation can be enabled or disabled at any

moment.

The main drawback of the Standard approach is

that it requires that all the Executors execute exactly

the same list of opcodes. It does not suit very well

for the Contracts that work with the Internet. That’s

why we offer an additional way for the formation of

the array.

The Contract Creator can foresee calls of a

special function that forcibly adds to the array the

specified value. It allows the Creator to require

checking the correctness of some critical values. We

call the approach the custom one. The values are

stored in the same array with the Standard

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

276 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Generation so these two approaches can be used

together.

6.1.2. Execution Log Aggregation

The purpose of the aggregation is to create a short

digest of the Execution Log the possession of which

more convenient to prove. We offer using hashing

for these purposes. It allows reacting on small

changes in the input array and produces a non-

trivial-predictable random variable. At the same

time, it doesn't matter that the algorithm is

cryptographically strong: hash speed is much more

important. In our experiments we use xxHash [21]

that satisfies all mentioned requirements.

6.2. Providing Proofs

When the Executors approve the result of

execution, they additionally approve the public

information, necessary to verify the possession of

secret information.

The verification is made by the blockchain

nodes. Since information in the blockchain is public,

proof of the Secret Information possession should be

made in a Zero-Knowledge manner. In such cases a

standard tool is proving knowledge of the discrete

logarithm of a group element. Usually, such a group

is either group of elliptic curve points [22] or

multiplicative group of integers modulo 𝑛.

In order to prove the possession of the Secret

information, the Executor should post a special

transaction with the proof. In order to decrease the

number of transactions, the Executor should have

the possibility to provide proofs for several

executions at once. Moreover, in order to be able to

execute the next Calls before the transaction with

Proof of Execution for the previous one is posted in

the blockchain, the proof generated by the Executor

should allow to verify that he has honestly executed

all the Contract Calls starting with arbitrary Call in

the past.

This is the reason for introduction Cumulative

Discrete Logarithm Zero Knowledge Proof.

6.3. Proof of Execution Properties

The purpose of the Proof of Execution is to

determine those nodes who honestly execute Smart

Contract in order to reward them. More formally the

algorithm should satisfy the following conditions:

 The Executors that honestly execute the

Contract are able to generate correct Proof of

Execution.

– The Executors that do not execute the

Contract are not able to generate correct Proof of

Execution except for negligible probability.

Both of these conditions are satisfied due to

using Cumulative Zero-Knowledge Proof that

satisfies Completeness, Soundness and Zero-

Knowledge properties:

7. CUMULATIVE DISCRETE LOGARITHM

ZERO-KNOWLEDGE PROOF

Let G to be a cyclic group with generator g such

that the finding the discrete logarithm in this group

is computationally difficult.

The standard problem of discrete logarithm

zero-knowledge proof is formulated as following for

given value 𝑦 ∈ 𝐺 prove knowledge of such value 𝑥

that 𝑦 = 𝑔𝑥.
In the [23] the following non-interactive proof

is proposed:

1. Peggy generates random value v and

computes t = gv.

2. Peggy computes c = hash(g, y, t), i = 1, n̅̅ ̅̅̅.

3. Peggy computes r = v − cx.
4. The proof is the pair(t, r).

The primitive algorithm for proving knowledge

of several values 𝑥1, … , 𝑥𝑛 such that 𝑔𝑥𝑖 = 𝑦𝑖 , 𝑖 =
1, 𝑛̅̅ ̅̅̅ is generating 𝑛 independent single proofs for

each value 𝑦𝑖 . But such an approach is not efficient

from the memory point of view: it would be more

convenient if the proof’s size was constant

regardless of value of 𝑛.

The approach described in [24] allows us to

extend the standard algorithm of discrete logarithm

knowledge proof for proving knowledge of several

logarithms with a constant proof size:

Peggy wants to prove Victor that she knows

values 𝑥1, … , 𝑥𝑛 such that 𝑔𝑥𝑖 = 𝑦𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅.

1. Peggy generates random value v and

computes t = gv.

2. Peggy computes ci = hash(g, yi, t, P), i =
1, n̅̅ ̅̅̅

3. Peggy computes r = v − c1x1 − ⋯ − cnxn

4. The proof is the pair (t, r).

5. In order to verify the proof Victor computes

values ci and verifies the equality t = gr ⋅ gc1 ⋅ ⋯ ⋅
gcn.

Nevertheless, such an approach requires that

both, the Prover and the Verifier agree on the last

proved value. As it is shown above, sometimes it is

not possible to guarantee. Therefore, it is necessary

to develop a mechanism that will not rely on the last

proved value. A straightforward solution is each

time generate a proof for all the values 𝑦1, … 𝑦𝑛. But

despite the proof’s size is still constant, it is very

non-efficient from the computational efficiency

point of view: in order to generate and verify each

proof it is necessary to process all preceding

sequence values that makes the computational

difficult of verifying 𝑛 proofs 𝑂(𝑛2).

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 277

Thus, an efficient algorithm must satisfy the

next condition:

 Each single Proof allows to verify

knowledge of all the sequence values from the

beginning to some element 𝑦𝑚.

 Each Proof generation and verification is

performed in time linear to the number of values for

which the proof has not yet been generated and

verified.

 The size of the Proof does not depend on the

number of elements in the sequence.

We offer the Cumulative Discrete Logarithm

Zero Knowledge Proof as the solution that satisfies

all the conditions.

The main idea behind the Cumulative Zero

Knowledge Proof is borrowed from prefix sums.

Prefix sum 𝑝1, … , 𝑝𝑛 of the array 𝑎1, … , 𝑎𝑛 being the

sum of the first 𝑖 elements of the array allows finding

the sum of any subarray 𝑎𝑚+1, … , 𝑎𝑛 in a constant

time via finding the difference 𝑝𝑛 − 𝑝𝑚.

In the same way Cumulative Zero Knowledge

Proof allows verification of the knowledge of new

values of a sequence via finding the “difference” of

Proofs.

The Cumulative Proof consists of two parts:

Main Proof and Safety Proof. Below we describe

the algorithm of the proof generation and

verification.

7.1. Cumulative Proof Generation

Main Proof

Let Peggy has already generated the Proof for

values x1, … , xm and now she would like to prove

Victor that she possesses values x1, … , xn , n > 𝑚

that are discrete logarithms of values y1, … yn base g.

In order to generate the Main Proof Peggy

1) computes ci = hash(g, yi, P) , i = m + 1, n̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

where P is Peggy’s public key

2) randomly picks v ∈ ℤl, where l is the size of

the group G.

3) computes tn = gv.

4) computes rn = v − c1x1 − ⋯ − cnxn mod l
The tuple b = (tn, rn) is called Main Proof.

Safety Proof

Unlike the original scheme for proving

knowledge of a single discrete logarithm, the values

of ci in Main Proof do not depend on value tn. This

makes it very vulnerable. Safety Proof is an auxiliary

part of Cumulative Proof and servers for The Safety

Proof serves for the avoidance of fraudulent

generation of the Main Proof. It allows proving that

Peggy truly knows the value of the discrete

logarithm of tn using standard Fiat–Shamir

heuristic.

In order to generate Safety Proof Peggy:

1) randomly picks w ∈ ℤl;
2) computes f = gw;

3) computes d = hash(f, tn, P);
4)computes k = w − dv mod l.

The tuple q = (f, k) is called Safety Proof.

7.2. Cumulative Proof Verification

We assume that Victor has already verified the

Cumulative Proof for values 𝑥1, … , 𝑥𝑚 with Main

Proof (𝑡𝑚, 𝑟𝑚). If 𝑚 = 0 we assume that 𝑟𝑚 = 0 and

𝑡𝑚 is equal to the neutral element of the group 𝐺.

The Verification of the Cumulative Proof for

values x1, … xn consists of two parts:

Safety Proof Verification and Main Proof

Verification.

 Safety Proof Verification
In order to verify whether the Safety Proof is

valid, Victor:

1) computes d = hash(f, tn, P);

2) verifies the equality: f = gktn
d.

If the equality is true, then Victor goes to Main

Proof Verification else the entire Proof is invalid.

Main Proof Verification

In order to verify whether the Main Proof is

valid, Victor:

1) computes ci = hash(g, yi, P), i = m + 1, n̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;

2) verifies the equality tntm
−1 = grn−rmym+1

cm+1 ⋅ ⋯ ⋅

yn
cn .

If the equality is true then the entire Cumulative

Proof is considered as a valid one.

7.3. Cumulative Proof Correctness

In this section we attempt to prove three

properties of the proposed Cumulative Zero-

Knowledge Proof: completeness, soundness and

zero-knowledge [12].

Completeness

Completeness property provides that any honest

Prover that is that one who possesses all values

x1, … , xn will pass the verification.

The completeness of the proposed Cumulative

Proof follows from the next equality:

tntm
−1 = gvng−vm

= grn+c1x1+⋯+cnxng−(rm+c1x1+⋯+cmxm)

= grn−rmgcm+1xm+1+⋯+cnxn

= grn−rmym+1
cm+1 ⋅ ⋯ ⋅ yn

cn

Soundness

The Soundness means that the Prover that does

not really know values x1, … , xn can pass the

verification with negligible probability.

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

278 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

The original scheme requires computing the

value c based on the value of T . It allows

guaranteeing that the Prover who does not know the

Secret Information has to solve a difficult Problem of

Discrete Logarithm Computing. Nevertheless such

an approach does not suit our algorithm because

otherwise, there will be no mutual annihilation of the

corresponding terms during verification and

completeness property will not be satisfied.

Now we will prove that the introduction of

Safety Proof in addition to Main Proof provides the

same protection as in standard Fiat-Shamir Heuristic.

Suppose that the Prover has already successfully

passed Verification for values x1, … , xm with Main

Proof (tm, rm) hense he has proved that he knows all

of them. Now he attempts to prove knowledge of

x1, … , xn, n > 𝑚 without possession the knowledge

about at least one of these values.

The Prover should find such pair (tn, rn) that

tntm
−1 = grn−rmym+1

cm+1 ⋅ ⋯ ⋅ yn
cn . Then for such a

Prover, there are two action strategies.

First Strategy. The Prover does not fix the value

of 𝑣 at the corresponding algorithm step. This allows

him to select the value 𝑟𝑛 in an arbitrary way that

uniquely identifies the value of 𝑡𝑛 =

𝑔𝑟𝑛−𝑟𝑚𝑡𝑚𝑦𝑚+1
𝑐𝑚+1 ⋅ ⋯ ⋅ 𝑦𝑛

𝑐𝑛 . But now to pass Safety

Proof the Prover should find the value of the discrete

logarithm of 𝑇 that is computationally difficult.

Second Strategy. The Prover fixes the value of 𝑣

at the corresponding algorithm step that uniquely

identifies the value of 𝑡𝑛 = 𝑔𝑣 (thus, the Prover

generates correct Safety Proof according to the

algorithm) and now the Prover should find the value

of 𝑟𝑛 such that 𝑔𝑟𝑛 = 𝑡𝑛𝑡𝑚
−1𝑔𝑟𝑚𝑦𝑚+1

−𝑐𝑚+1 ⋅ ⋯ ⋅ 𝑦𝑛
−𝑐𝑛

that again makes him solve the discrete logarithm

problem (the Prover cannot use the formula 𝑟𝑛 = 𝑣 −
𝑐1𝑥1 − ⋯ − 𝑐𝑛𝑥𝑛 mod 𝑙 since he does not know at

least one of 𝑥𝑖).

Zero-Knowledge

Single Proof does not disclose more information

than the original scheme so the Zero Knowledge of

the single Proof follows from Zero Knowledge of the

scheme.

Two given proofs for values x1, … , xm and for

x1, … , xm , m < 𝑛 do not provide the Verifier with

any additional information since in the difference

rn − rm = (vn − vm) + cm+1xm+1 + ⋯ + cnxn the

value of vn − vm is unknown for the Verifier.

7.4. Cumulative Proof Properties

One of the important properties of the

Cumulative Proof is that it allows proving

knowledge of the sequence elements not from the

very beginning but starting from the arbitrary

element. It allows the Executors to start Smart

Contract execution at any moment without the need

of executing Calls that were initiated long time ago

in order to be able to generate a valid Proof of

Execution.

8. COMPARISION WITH THE EXISTING

SOLUTIONS

The existing schemes of increasing scalability

of Smart Contracts propose Sharding blockchain

nodes [8] or executing Smart Contracts offchain [9,

10]. The Concept proposed in the article in fact

merges these ideas in such a way that Contracts are

executed off chain but with formation of concrete

Shards.

Such scheme has a row of advantages

comparing to the existing solutions:

 The possibility of allocating an arbitrary

amount of information for the Contract work. The

property is achieved due to allocating the data on the

Drives that allow information overwriting and are

stored only on a subset of Network nodes.

 The possibility of interaction with the

Internet. The property is achieved due to a specially

developed algorithm of agreement on the Smart

Contract Execution result.

– Incentivization of all nodes to honestly

execute the Smart Contract. The property is achieved

due to first proposed algorithm of Proof of Execution.

9. CONCLUSIONS

The work is devoted to the development of

Sharding Concept for Decentralized Applications

(DApps) that are expressed in form of Smart

Contracts.

The concept assumes that Smart Contract data is

stored on specially designed decentralized file

storages called Drive. The Drives unlike other

solutions, such as [15, 16] allow decentralized

collective-decision making. It allows considering

them as separate Shards.

The special algorithm of agreement on the

results of Smart Contract execution is designed. Due

to its ability to determine impossibility to find

consensus on successful Contract Execution the

interaction with internet becomes possible that

favorably distinguishes the proposed system from the

existing ones, in which obtaining information from

the Internet requires special oracles.

The main advantages of the proposed scheme

comparing to the existing ones are lack of any

centralization, the possibility of storing arbitrary

large amount of information and interaction with the

Internet.

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 279

One of the key features of the proposed system is

the rewards distribution scheme. Unlike other

systems it assumes all nodes who honestly execute

the Smart Contract remuneration.

In order to make it possible a special scheme

called Proof of Execution is developed. It allows

determining which nodes honestly receive their

rewards based on the assumption that such nodes

possess some information that is unavailable to the

malicious nodes. The way of constructing the

information as execution fingerprint is offered.

A special cryptographic protocol necessary for

making computational and memory complexity of

Proof of Execution called

Cumulative Zero-Knowledge Proof is developed.

It allows proving the possession of expanding set of

discrete logarithms without knowledge which part of

the sequence has already been proved by the moment

of new proof generation. This algorithm is

superstructure over existing discrete logarithm ZK

proof and so is applicable to any group in which the

discrete logarithm is computationally difficult. The

correctness of the protocol that consists of

Completeness, Soundness and Zero-Knowledge is

proven.

Thus, the new concept of Smart Contracts

Sharding with the possibility of interaction with the

Internet is offered, the mechanism of incentivizing

nodes to honestly execute the Smart Contracts is

developed, the Cumulative Proof that is necessary

for cryptographic strength of the specified

mechanism is offered and its correctness is proven.

The goals set in the article have been achieved.

REFERENCES

1. Mazurok, I. E., Leonchyk, Y. Y. & Kornylova, T. Y. “Proof-of-Greed Approach in the NXT

Consensus”. Applied Aspects of Information Technology. Publ. Science i Technical. Odessa: Ukraine. 2019;

Vol.2 No.2: 153–160. DOI: https://doi.org/10.15276/aait.02.2019.6.

2. Kovalev, I. S., Drozd, O. V., Rucinski, A., Drozd, M. O., Antoniuk, V. V. & Sulima, Yu.Yu.

“Development of Computer System Components in Critical Applications: Problems, their Origins and

Solutions”. Herald of Advanced Information Technology. Publ. Nauka i Tekhnica. 2020; Vol.3 No.4: 252–

262. Odessa. Ukraine. DOI: https://doi.org/10.15276/hait.04.2020.4.

3. Kalnauz, D. V. & Speranskiy, V. A. “Productivity Estimation of Serverless Computing”. Applied

Aspects of Information Technology. Publ. Nauka i Tekhnica. Odessa: Ukraine. 2019; Vol. 2 No.1: 20–28.

DOI: https://doi.org/10.15276/aait.01.2019.2.

4. Szabo, N. “Smart Contracts”. – Available from: https://www.fon.hum.

uva.nl/rob/Courses/InformationInSpeech/CDROM/Literature/LOTwinterschool2006/szabo.best.vwh.net/sma

rt.contracts.html. – [Accessed 15 Feb 2020].

5. Hugo Hoffmann, C. “Blockchain Use Cases Revisited: Micro-Lending Solutions for Retail Banking

and Financial Inclusion”. Journal of Systems Science and Information, 2021; Vol. 9 No. 1: 1–15.

DOI: https://doi.org/10.21078/JSSI-2021-001-15.

6. Malamud, Semyon & Marzena Rostek. “Decentralized Exchange”. American Economic Review,

2017; 107 (11): 3320-3362. DOI: https://doi.org/10.1257/aer.20140759.

7. Ante, L. “The Non-Fungible Token (NFT) Market and its Relationship with Bitcoin and Ethereum”.

BRL Working Paper Series. 2021; Vol. 21: 1-15. DOI: https://dx.doi.org/10.2139/ssrn.3861106.

8. CRYPTO.COM. “Ethereum 2.0. An Introduction”. – Available from:

https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/

Crypto.com_Macro_Report_-_Ethereum_2.0.pdf. – [Accessed 15 Feb 2020].

9. Marukhnenko, O. & Khalimov, G. “The Overview of Decentralized Systems Scaling Methods”.

Fifth International Scientific and Technical Conference “Computer and Information Systems and

Technology”. 2021: 37-38. DOI: https://doi.org/10.30837/csitic52021232174.

10. Androulaki, E., Barger, A., Bortnikov, V., Cachin, C et al. “Hyperledger fabric: a distributed

operating system for permissioned blockchains”. In Proceedings of the Thirteenth EuroSys Conference

(EuroSys '18). Association for Computing Machinery, New York: NY, USA. 2018; Article 30, 1–15. DOI:

https://doi.org/10.1145/3190508.3190538.

11. Feige, U., Fiat, A. & Shamir, A. “Zero-Knowledge Proofs of Identity”. J. Cryptology 1. 1988.

p. 77–94. DOI: https://doi.org/10.1007/BF02351717.

12. Goldreich, O. & Oren, Y. “Definitions and Properties of Zero-Knowledge Proof Systems”. Journal

of Cryptology”. 1994; Vol. 7 No. 1: 1–32. DOI: https://doi.org/10.1007/BF00195207.

https://doi.org/10.15276/aait.01.2019.2
https://doi.org/10.1257/aer.20140759
https://dx.doi.org/10.2139/ssrn.3861106
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://assets.ctfassets.net/hfgyig42jimx/7j3AVp5aCnx2Ct2P6T6kY/e8991d5da1972d5d760233868f237609/Crypto.com_Macro_Report_-_Ethereum_2.0.pdf
https://doi.org/10.30837/csitic52021232174
https://doi.org/10.1007/BF02351717
https://doi.org/10.1108/02632770210435206
https://doi.org/10.1108/02632770210435206

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

280 ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

13. Ben-Sasson, E., Chiesa, A., Tromer, E. & Virza, M. “Succinct Non-Interactive Zero Knowledge for
a von Neumann Architecture”. SEC'14: Proceedings of the 23rd USENIX Conference on Security
Symposium. 2014. p. 781–796.

14. Ben Sasson, E. et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. IEEE
Symposium on Security and Privacy. 2014. p. 459–474. DOI: https://doi.org /10.1109/SP.2014.36.

15. Castro, M. & Barbara, L. “Practical Byzantine Fault Tolerance”. In Proceedings of the third
symposium on Operating systems design and implementation (OSDI '99). USENIX Association. USA. 1999.
p. 173–186.

16. Y. Psaras and D. Dias, "The InterPlanetary File System and the Filecoin Network," 2020 50th
Annual IEEE-IFIP International Conference on Dependable Systems and Networks-Supplemental Volume
(DSN-S). 2020. p. 80–80. DOI: 10.1109/DSN-S50200.2020.00043.

17. Figueiredo, S., Madhusudan, A., Reniers, V., Nikova, S. & Preneel, B. “Exploring the Story
Network: a Security Analysis”. In Proceedings of the 36th Annual ACM Symposium on Applied Computing
(SAC '21). Association for Computing Machinery. New York: NY, USA. 2021. p. 257–264.
DOI: https://doi.org/10.1145/3412841.3441908.

18. Haas, A., Rossberg, A., Schuff, D. L., Titzer, B. L., Holman, M., Gohman, D., Wagner, L., Zakai,
A. & Bastien, J. F. “Bringing the Web up to Speed with WebAssembly”. In Proceedings of the 38th ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI 2017). Association for
Computing Machinery. New York: NY, USA. 2017. p. 185–200. DOI: https://doi.org/10.1145/
3062341.3062363.

19. Paulin, O. N., Komleva, N. O., Marulin, S. U. & Nikolenko, A. A. “Method for Constructing the
Model of Computing Process Based on Petri Net”. Applied Aspects of Information Technology. Publ.
Science i Technical. Odessa: Ukraine. 2019; Vol. 2 No. 4: 260–270. DOI: https://doi.org/10.15276/
aait.04.2019.1.

20. Gilad, Y., Hemo, R., Micali, S., Vlachos, G. & Zeldovich, N. “Algorand: Scaling Byzantine
Agreements for Cryptocurrencies”. SOSP '17: Proceedings of the 26th Symposium on Operating Systems

Principles. 2017. p. 51–68. DOI: https://doi.org/10.1145/3132747.3132757.
21. GITHUB. “xxHash – Extremely fast hash algorithm”. – Available from:

https://github.com/Cyan4973/xxHash. – [Accessed 15 Feb 2020].

22. Washington, L.C. Elliptic Curves: Number Theory and Cryptography, Second Edition (2nd ed.).
Chapman and Hall/CRC. 2008. DOI: https://doi.org/10.1201/9781420071474

23. Bernhard, D., Pereira, O. & Warinschi, B. “How Not to Prove Yourself: Pitfalls of the Fiat-Shamir
Heuristic and Applications to Helios”. Advances in Cryptology – ASIACRYPT. 2012. p. 626–643.
DOI: https://doi.org/10.1007/978-3-642-34961-4_38.

24. J. Camenisch and M. Stadler, “Proof systems for general statements
about discrete logarithms,” ETH Zurich, Technical Report No. 260. Tech.

Rep. 1997. DOI: https://doi.org/10.3929/ETHZ-A-006651937.

Conflicts of Interest: the authors declare no conflict of interest

Received 15.12.2020

Received after revision 25.02.2021

Accepted 16.03.2021

DOI: https://doi.org/10.15276/aait.03.2021.6

УДК 004.75

Шардування смарт контрактів з доказом виконання

Ігор Євгенійович Мазурок1)
 ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com. Scopus ID: 57192064365

Євген Юрійович Леончик1)
 ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net. Scopus ID: 57192064365

 Олександр Сергійович Антоненко1)
 ORCID: https://orcid.org/0000-0001-9680-3446; asantonenko@gmail.com. Scopus ID: 17433258300

Кирило Сергійович Волков1)
ORCID: https://orcid.org/0000-0002-7705-8994; cyrillicw@gmail.com

1) Одеський національний університет імені І. І. Мечникова, вул. Дворянська, 2. Одеса, 65082, Україна

https://doi.org/10.1145/3412841.3441908
https://doi.org/10.1145/3132747.3132757
https://github.com/Cyan4973/xxHash
https://doi.org/10.1007/978-3-642-34961-4_38
https://doi.org/10.3929/ETHZ-A-006651937
https://doi.org/
mailto:asantonenko@gmail.com
mailto:cyrillicw@gmail.com

Applied Aspects of Information Technology 2021; Vol. 4 No. 3: 271–281

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

 281

АНОТАЦІЯ

Останнім часом активно досліджуються децентралізовані мережі на основі технології блокчейн. Особливе місце в цих

дослідженнях займають Смарт Контракти, що широко використовуються в багатьох галузях, таких як децентралізовані

фінанси (DeFi), нерухомість, азартні ігри, виборчі процеси тощо. Тим не менше, можливість їх широкого застосування є

досі не вирішеною проблемою. Це викликано тим, що вони мають обмежену гнучкість та масштабованість. Іншими

словами, Смарт Контракти не можуть обробляти велику кількість викликів у секунду, відсутність прямого доступу до

мережі Інтернет, неможливість роботи з великою кількістю даних тощо. Дана робота присвячена розробці концепції

шардування для децентралізованих програм (DApps) у формі контрактів, написаних на WebAssembly. Пропонується

концепція, яка передбачає, що кожен Контракт виконується набором випадково обраних вузлів, що дозволяє уникнути

змови та запобігти атаці Сивілли. Під час дослідження були розроблені децентралізовані Сховища даних з можливістю

колективного прийняття рішень. Запропонована схема формування Сховищ, яка передбачає, що кожен Контракт

виконується набором випадково вибраних вузлів, що дозволяє уникнути змови та запобігти атаці Сивілли. Такий підхід

дозволив використовувати Сховища як базовий рівень для Смарт Контрактів. Крім того, Сховища можна використовувати

як автономне рішення для децентралізованого зберігання даних. Описано особливості узгодження результатів виконання

Контрактів, що значно розширює можливості Контрактів порівняно з Ethereum Smart Contracts і, зокрема, дозволяє

взаємодіяти Контрактам з Інтернетом. Розроблено концепцію винагороди, яка стимулює всі вузли, які чесно виконують

Контракти, на відміну від інших систем, де винагороду отримує лише блок продюсер. Вона базується на спеціально

розробленому Доказі Виконання (Proof of Execution) – спеціальному алгоритмі, який дозволяє виявляти всі вузли, які чесно

виконують Контракти. Для того, щоб зробити Доказ Виконання більш компактним, розроблено кумулятивне розширення

існуючого алгоритму доведення знання дискретного логарифму з нульовим розголошенням, що дає можливість послідовно

доводити знання динамічно розширюваного набору значень з мінімальною обчислювальною та пам’ятною складністю.

Таким чином, у цій статті досліджується нова концепція шардування Смарт Контрактів, що наділена економічними

важелями. Основними перевагами запропонованого підходу є можливість взаємодії з мережею Інтернет та обробка великих

об’ємів даних. Крім того, розроблено механізм стимулювання вузлів до чесного виконання Смарт Контрактів. А також

пропонується Доказ Виконання, що необхідно для криптографічної міцності зазначеного механізму, та доведена його

корректність. Отримані результати можуть бути використані для реалізації Смарт Контрактів у децентралізованих системах,

зокрема, що працюють на основі технології Blockchain, особливо у випадку вимог до високої пропускної здатності та

продуктивності.

Ключові слова: доведення виконання; кумулятивне доведення; шардування; смарт контракти; доведення з нульовим

розголошенням

ABOUT THE AUTHORS

Igor E. Mazurok, PhD in Computer Science, Associate Prof. of the Department of Optimal Control and Economic Cybernetics.
Odessa I. I. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0002-6658-5262; igor@mazurok.com; Scopus ID: 57192064365
Research field: Distributed computing; decentralized system design and modeling; artificial intelligence

Ігор Євгенійович Мазурок, кандидат технічних наук, доцент кафедри Оптимального керування та економічної

кібернетики. Одеський національний університет ім. І. І. Мечникова, вул. Дворянська, 2. Одеса, 65082, Україна

Yevhen Y. Leonchyk, Ph.D. in Physics and Mathematics, Associate Prof. of the Department of Mathematical Analysis. Odessa

I. I. Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine
ORCID: https://orcid.org/0000-0003-1494-0741; leonchik@ukr.net; Scopus ID: 57192064365

Research field: Mathematical modelling of computer; environmental and economic complex systems; blockchain technology

Євген Юрійович Леончик, кандидат фізико-математичних наук, доцент кафедри Математичного аналізу. Одеський
національний університет ім. І. І. Мечникова, вул. Дворянська, 2. Одеса, 65082, Україна

Oleksandr S. Antonenko, PhD, Associate Prof. of the Department of Mathematical Support of Computer Systems. Odessa I. I.
Mechnikov National University. 2, Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0001-9680-3446; asantonenko@gmail.com; antonenko@onu.edu.ua; Scopus ID: 17433258300

Research field: Automata theory; automata groups and semigroups; computability theory; algorithmic information theory;
blockchain

Олександр Сергійович Антоненко, кандидат фізико-математичних наук, доцент кафедри Математичного

забезпечення комп’ютерних систем. Одеський національний університет імені І. І. Мечникова, вул. Дворянська, 2.
Одеса, 65082, Україна

Kyrylo S. Volkov, Bachelor of Applied Mathematics, Master Student. Odessa I. I. Mechnikov National University, 2,

Dvoryanskaya Str. Odessa, 65082, Ukraine

ORCID: https://orcid.org/0000-0002-7705-8994; cyrillicw@gmail.com

Research field: Blockchain; DeFi; machine learning

Кирило Сергійович Волков, магістрант. Одеський національний університет імені І. І. Мечникова, вул. Дворянська,

2. Одеса, 65082, Україна

https://orcid.org/0000-0002-6658-5262
mailto:igor@mazurok.com
https://orcid.org/0000-0003-1494-0741
mailto:leonchik@ukr.net
https://orcid.org/0000-0001-9680-3446
https://orcid.org/0000-0002-7705-8994
mailto:cyrillicw@gmail.com

