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ABSTRACT 

Nowadays, Decentralized Networks based on Blockchain technology are actively researched. A special place in these 

researches is occupied by Smart Contracts that are widely used in many areas, such as Decentralized Finance (DeFi), real estate, 

gambling, electoral process, etc. Nevertheless, the possibility of their widespread adoption is still not a solved problem. This is 

caused by the fact of their limited flexibility and scalability. In other words, Smart Contracts cannot process a large number of 

contract calls per second, lack of direct Internet access, inability to operate with a large amount of data, etc. This article is devoted to 

the development of the Sharding Concept for Decentralized Applications (DApps) that are expressed in form of Smart Contracts 

written in WebAssembly. The aim of the research is to offer a new Concept of Smart Contract that will increase the scaling due to 

applying the idea of Sharding that allows avoiding doing the same work by all nodes on the Network and flexibility due to the 

possibility of interaction with the Internet without special Oracles. During the research, decentralized 0ata storages with the 

possibility of collective decision-making were developed. The scheme of forming Drives that assumes that each Contract is executed 

by a set of randomly selected nodes that allows avoiding cahoots and prevents Sybil Attack is offered. Such an approach allowed 

using Drives as a base layer for Smart Contracts. Moreover, Drives can be used as a standalone solution for decentralized data storing. 

The features of coordination of results of Contracts execution that greatly expands the possibilities of the Contracts compared to 

Ethereum Smart Contracts, and, in particular, allow the Contracts to interact with the Internet are described. The Rewards Concept 

that incentivizes all nodes that honestly execute the Contracts, unlike other systems where only the block producer is rewarded, is 

developed. It is based on the specially developed Proof of Execution – a special algorithm that allows detecting all the nodes that 

honestly execute the Contracts. In order to make the Proof of Execution more compact, an extension for the existing discrete 

logarithm zero-knowledge proofs that makes it possible to consistently prove knowledge of dynamically expanding set of values with 

minimal computational and memory complexity so-called Cumulative Discrete Logarithm Zero-Knowledge Proof is developed. Thus, 

in this article, the new concept of Smart Contracts Sharding empowered by economic leverages is researched. The main advantages 

of the proposed approach are the possibility of interaction with the Internet and big data processing. Moreover, the mechanism of 

incentivizing nodes to honestly execute the Smart Contracts is developed. In addition, the Cumulative Proof that is necessary for the 

cryptographic strength of the specified mechanism is offered and its correctness is proven. The obtained results can be used to 

implement Smart Contracts in decentralized systems, in particular, working on the basis of Blockchain technology, especially in the 

case of demanding high bandwidth and performance. 
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1. INTRODUCTION, FORMULATION  

OF THE PROBLEM 

The recent years the decentralized and 

distributed networks are actively studied and 

problems that arise in such networks are researched 

[1, 2], [3]. Special attention is paid to Smart 

Contracts on the base of blockchain. 

For the first time the idea of Smart Contracts 

was offered by Nick Szabo in 1994 [4]. They 

became widespread after the emergence of the 

Ethereum blockchain network that, in fact, provides 

an environment and infrastructure for execution 
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Smart Contracts written in Solidity. Since then, 

contracts have been widely used in many areas: 

finance (lending [5], exchanges [6]), guaranteeing 

property rights [7], etc. 

Despite its innovation and flexibility, Ethereum 

Smart Contracts have a number of disadvantages, 

including those related to the network architecture. 

Among the main disadvantages can be noted low 

bandwidth – the Ethereum is not able to process a 

large number of contract calls per second, lack of 

direct Internet access, inability to operate with a 

large amount of  

data, etc. They are, in particular, called by the fact 

that the Smart Contracts are executed by the all 

blockchain nodes. 

https://doi.org/
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The Ethereum and similar systems offer the 

algorithm of encouragement of Smart Contract 

Execution that is developed at the Blockchain 

Consensus Level based on Proof of Work and 

assumes that only the producer of the block is 

rewarded. Such an approach does not incentivize the 

nodes of the Network to validate correctness of the 

execution. 

Thus, the following problem arises: to develop 

an environment for Smart Contracts Execution that: 

– supports Sharding – dividing the Work among 

the nodes of the Network that assumes that each 

Contract is executed by a large enough set of nodes, 

whose size is significantly less than the whole 

number of nodes in the Network 

– allows the Contracts to interact with Internet 

and other Contracts 

– incentivizes the nodes to honestly execute the 

Contracts 

The last point assumes that the nodes must be 

rewarded for their work. Therefore it is necessary to 

have the possibility to determine the nodes that have 

indeed executed the contract. Since the results of the 

execution must be public, then it is impossible to 

perform such determination via checking possession 

the results of the execution. That’s why the 

algorithm that allows determining such nodes must 

be developed. 

2. LITERATURE OVERVIEW 

All the mentioned problems significantly 

decrease the possibility of using the existing solution 

in wider spectrum of cases. That’s why they are 

actively researched. 

In particular, Ethereum is actively working on 

Ethereum v2.0 [8] that aims to introduce Sharding 

that will allow to significantly increase the number 

of contract calls executed per second and the main 

idea of which is dividing the network into subnets 

called shards and parallelization of work among 

them. 

In [9] the overview of Ethereum Layer 2 

Scaling: Plasma, ZK-Rollups and Optimistic Rollups 

– is given. The main idea of the solutions is to take 

the most operations off-chain, in particular, via 

building child chains and registration of some events 

in the parent chain. Nevertheless all of the proposed 

ideas require either centralization, or significant 

decrease in functionality, for example, the 

possibility of using Contracts only for tokens 

transfers. 

Hyperledger offers its solution for Private 

Networks called ChainCode [10]. In this solution 

similar ideas can be traced: only some nodes of the 

Network execute the code. Moreover, nodes are not 

the Harvesters – the nodes that produce the blocks. 

Zero-Knowledge Proofs [11, 12] is a method 

used in cryptography for proving possession secret 

information to a Verifier without providing it any 

additional information about the secret except for the 

fact that the Prover knows it. 

The Zero-Knowledge Proofs are actively used 

and researched in blockchain area. A special 

attention is paid to non-interactive protocols – those 

ones that do not suggest sequential messaging 

between the Prover and the Verifier but assume that 

the Verifier is able to check possession of the secret 

information after receiving a single message from 

the Prover. 

The Proofs have become especially popular due 

to the development of blockchain technologies.  

The most wide used algorithms are zk-SNARK 

[13]. This is a class of Zero-Knowledge Proofs that 

possesses a number of additional properties 

including succinct proof property that requires the 

proof size to be a constant value. 

Most often these algorithms are used to prove 

the validity of token transfer transactions. In 

particular, such a technology is used by ZCash [14]. 

3. THE AIM AND OBJECTIVES OF THE 

RESEARCH 

The aim of the research is to develop a new 

architecture of smart contracts that will make 

execution more flexible, scalable and increase 

incentives for nodes to work honestly. 

Research objectives: 

1. Offer a new concept of Smart Contracts 

Sharding with the possibility of interaction with the 

Internet. 

2. Develop the mechanism of incentivizing 

nodes to honestly execute the Smart Contracts 

3. Offer a new cryptographic protocol that 

allows proving the possession of expanding 

sequence of discrete logarithms. The protocol should 

allow proving without knowledge which part of the 

sequence has already been proved by the moment of 

new proof generation. 

4. DRIVE 

In order to introduce the offered concept of 

Smart Contracts we should preliminary introduce 

Drives. We use Drive concept to store both Smart 

Contract Code and Smart Contract Data. Each Drive 

has its Owner – user of Smart Contact System, 

which should upload Smart Contract Code and 

initial data for Smart Contract on stage of 

Deployment of Smart Contact. 
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The Drive is a decentralized storage served by a 
set of Network nodes called Executors. The simplest 
idea is to store all Drives information on the same 
set of Executors. But then we will not obtain 
sharding concept and we obtain system which is in 
many ways similar to Etherium 1.0 system.   So we 
offer to store a Drive on a proper subset of all 
Executors. Only this subset Executors will run Smart 
Contract located on this Drive. Since Drive is not 
stored by all Network participants, its size can be 
quite large. This allows storing arbitrary information 
and process large files including databases. 

All Executors of some Drive store the same 
information about Drive content which is negotiated 
and approved on the blockchain using the 
Multisignature mechanism. The essence of this 
approach is that changing the contents of the Drive 
is made via releasing the transaction that is signed 
with the supermajority of the Executors. This allows 
to work in standard assumptions for Byzantine Fault 
Tolerance [15] system that assume that there is less 
than one third of fault Replicators on the Drive. 

The possibility of collective decision-making 
via Multisignature mechanism favorably 
distinguishes our solution from other decentralized 
storages [16, 17] which either does not provide the 
possibility of collective decision-making at all, or 
they are carried out in a centralized way. 

Since the total size of information on Drive can 
be pretty large, it is logical to store in blockchain 
transactions not all the content of Drive, but some 
aggregate information of it, for example, hash of all 
Drive content. 

In fact such Drives are analogs of Shards in 
other Networks but with the clarification that each 
Executor can be a member of several Drives. 

The common problem for Sharding systems is 
the procedure of assigning nodes to Shards: if each 
node can select the wished Shard by itself, then the 
performing of Sybil Attack becomes much easier: it 
is sufficient to seize a single Shard in order to  put 
under threat the functionality of the entire Network. 

In order to prevent the possibility of the attack 
and avoid cahoots, Executors on the Drives are 
assigned randomly. 

To summarize our thoughts, the Drives can be 
used on one’s own, like decentralized analogue of 
cloud storage service, like Google Drive or 
Dropbox. But using them as a base layer for Smart 
Contracts is the most interesting. 

5. SMART CONTRACTS 

In this section we introduce the concept of Smart 
Contracts – the more advanced analogous of 
Ethereum Smart Contracts. 

Smart Contract is a special kind of 
Decentralized Application in a form of software 

product. The Contract code is stored on a separate 
Drive and is public that means that everybody is able 
to download the code and make sure there are no 
vulnerabilities. The code is immutable that 
guarantees that all the terms of an electronic contract 
will not be changed over the time.  

The Smart Contracts are written in 
WebAssembly [18] and executed by Executors. 

Usage of WebAssembly allows: 

 avoiding development of own programming 
language and virtual machine like it is made in 
Ethereum 

– lowering the entry threshold for developers 

5.1. Contract deployment 

At first, the creator of a Contract need to upload 
source code of the Contract and all the data needed 
by the Contract to some drive. We call this process 
Contract deployment. On this stage Contract creator 
can modify the source code and the data on Drive as 
he wants, but after finishing of deployment process, 
he loses direct control on both source code and data, 
since all data on Contract Drive can be modified 
only through Contract code execution. This is used 
to protect users of Contract against abuse by the 
creator of the Contract (for example, in case of 
online auction, the initiator of the auction cannot 
cancel it after start, or change the auction conditions 
or terms).  

The results of successful or unsuccessful 
deployment of the Contract, as well as initial state of 
the Drive after deployment are fixed by a 
corresponding transaction in the blockchain. 

Thus, the Contracts code is immutable after 
finish of deployment process, so the developers must 
carefully analyze it before uploading, in particular, 
using the method proposed in [19]. 

5.2. Contract runs 

The Contract run is initiated via posting a 

corresponding transaction into the blockchain. We 

will call a concrete request of the Contract run as a 

Call. 

The Call starts to be executed as soon as the 

block with the corresponding transaction is finalized. 

It allows guaranteeing that all the Executors run the 

Call in the same order. 

The transaction contains all necessary 

information for the Call Execution including the 

arbitrary parameters. It allows locking tokens on 

behalf of the Contract. 

5.3. Interaction with data 

The Smart Contracts can interact with all the 

files on their Drives. The interaction includes 

reading, modifying, and removing any files.  
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Interaction with the blockchain is limited. The 

limitation is caused by the fact that Contracts are 

executed in parallel to the blockchain so different 

Executors may have different states of the 

blockchain by the moment of execution. The similar 

problem is considered by Hyperldger [10].  

They offer introducing two sets: 

 Read Set - a list of unique blockchain keys 

and their committed version numbers that are read 

during the execution. 

– Write Set - a list of unique blockchain keys 

modified during the execution. 

The execution is then considered as a successful 

one if the values mentioned in the Read Set have not 

been modified during the execution.  

Nevertheless, we refuse such an approach and 

prefer limiting the information accessible during the 

execution because of the following disadvantages of 

Read Set: 

– modification of some information in the 

blockchain that was used during the execution does 

not always mean incorrect contract execution: for 

example, if the balance of an account has increased, 

then it should not be a block for transferring money 

from the account initiated with the contract; 

 a malefactor can maliciously modify some 

values in order to fail the execution. 

The limitation consists in the fact that the 

Contract can interact only with immutable part of 

the blockchain: blocks and transactions and not the 

state.  

Due to the approach of approving the Execution 

Results the Contracts are able to interact with the 

Internet. Despite reading from Internet and Writing 

to Internet are almost indistinguishable from the 

network point of view, it should be noted that since 

the Contract is executed by a couple of Executors, 

writing to the Internet can have unexpected 

consequences so in fact the interaction with the 

Internet is limited with the possibility of 

downloading data. 

5.4. Interaction of several Contracts 

Typical Ethereum Smart Contract calls other 

Smart Contracts during its execution. That’s why it 

is necessary to provide Contracts with the similar 

possibility of interacting with each other. The 

difficulty of the problem is explained by the fact that 

Contracts are run in parallel independently of each 

other so different Executors of both Contracts may 

receive different results.  

We offer the next solution of the problem: 

– Running of a Smart Contract by another 

Smart Contract can be performed only via posting 

the corresponding transaction to the blockchain 

–  Obtaining information from a Contract can 

be performed only as downloading a file with known 

hash. 

Such an approach allows guaranteeing that all 

the Executors always execute the same actions and 

receive the same information.  

5.5. Approving the Execution Results 

After the Call is executed, the Executors have to 

agree on the results of its execution and approve 

them in the blockchain via posting a special 

transaction. 

Since during its work, the Contract can modify 

data stored on its Drive and issue transaction to the 

blockchain, then the process of agreement on the 

execution results comes down to the process of 

agreement on the final contents stored on the Drive 

and the contents of the issued transaction. In order to 

decrease network load a typical solution is 

agreement on hashes of the corresponding values. 

Since the Contracts have access to the Internet, 

the situation when different executors receive 

different results can arise. Despite the fact that it 

obviously indicates that the contract does not work 

properly, such a situation must be processed in 

normal mode. 

Thus, the procedure of agreement should 

support the next scenarios: 

 The supermajority of Executors agrees on 

the same results of Contract execution. 

 There does not exist a supermajority of 

Executors that agrees on the same results of Contract 

execution. 

In the first case the Contract is executed 

successfully and the results on which an agreement 

has been reached can be considered the results of the 

Contract execution. Such a task can be solved by 

any Byzantine Fault Tolerance consensus or via 

Multisignature mechanism. 

The second case is more difficult since it is not 

possible to find out whether the desired 

supermajority exists until all the Executors express 

their opinion. The consensuses that are able to solve 

such problem usually use the concept of time [20]. It 

allows avoiding endless waiting for the responses 

from all the nodes, considering that the nodes that 

have not sent a response in the allotted time will 

never send it. 

A feature of the problem being solved is that the 

Executors that the process of agreement is not 

regular like accepting blocks in the blockchain but 

takes place only when the Executors complete their 

work. Due to different computing power of 

Executors, network lags, etc. the moments when the 

executions are finished can differ a lot. 



Applied Aspects of Information Technology                            2021; Vol. 4 No. 3: 271–281 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

 275 

 

Taking into all the above we offer the next 

solution of the problem based on the Multisignature 

mechanism: 

1. As soon as the Executor completes the 

execution, it sends signed opinion about the results 

of the execution to all other Executors at time 𝑇 

2. If at some moment of time the Executor 

collects necessary number of signatures for the same 

execution results, it means that the agreement is 

reached and all the corresponding signatures are sent 

to the blockchain. 

3. If by time 𝑇 + 𝑡 , where 𝑡  is the maximum 

waiting time the results of the execution are not 

approved in the blockchain, the Executor sends 

signed opinion about the unsuccessful  execution to 

all other Executors. 

4. As soon as the Executor collects necessary 

number of signatures for unsuccessful execution, 

they are sent to the blockchain. 

Since we assume that the supermajority of 

Executors is honest, in the worst case they all sooner 

or later will agree on the unsuccessful results of the 

execution. Since each Executor uses its local time, 

there is no need to synchronize time among the 

Executors and the algorithm works properly even if 

Executors complete execution with a very large time 

difference. 

That’s why we offer using a so-called two-

phasic approving: 

1. Executors try to approve the successful 

results of the execution using Multisignature 

mechanism described above. 

2. If the results are not approved after 

expiration of a time limit, the Executors try to 

approve the unsuccessful results of the execution 

In the worst case, when the Executors receive 

different results of the Execution, they are always 

able to cope with the situation and continue working 

in a regular mode. 

The approach described above allows solving 

problem of interacting with the Internet: the 

information downloaded from the internet will be 

applied only if the Executors will be able to agree on 

the final results of the execution. At the same time, 

problems with interaction on the one Drive do not 

influence other Drives and Smart Contracts. 

5.6. Rewarding the Executors 

The Executors perform their work in order to 

receive rewards. The amount of the reward is 

proportional to the amount of work executed. As is 

other systems, this amount is measured as the 

number of opcodes executed by the WebAssembly 

Virtual Machine. 

The algorithm of rewards accrual should satisfy 

the two given properties: 

 If the Executor has honestly executed the 

Smart Contract, it must receive the reward. 

 If the Executor has not executed the 

Contract, it must not receive the reward. 

Malicious Executors may try to lie whether they 

have executed the contract in order to receive 

improper gain. 

6. PROOF OF EXECUTION 

The main idea of Proof of Execution is that 

those Executors who honestly execute the Contract 

Calls possess some information that is not available 

for other Executors. This allows them to prove the 

fact they have executed the Contract via proving the 

knowledge of this information. Such proof must be 

made in a Zero-knowledge proof manner in order to 

prevent disclosure of secret information. 

6.1. Secret Information Generation 

In this section we consider the ways of secret 

information generation. Since possession of the 

information proves the execution of the Contract 

Call, this information should be a digest of execution 

log. Thus, the process of the information generation 

can be divided into two parts – Execution Log 

Generation and Execution Log Information. 

6.1.1. Execution Log Generation 

The purpose of Execution Log Generation is to 

create such an array that reflects the process of the 

Call Execution. We offer two ways of the array 

creation: Standard and Custom. They are not 

mutually exclusive and can be used together.  

Since Smart Contracts are executed in a Virtual 

Machine, the Contract Call is in fact an ordered list 

of opcodes, each of which has its own id and 

parameters oi. This allows us to introduce the next 

representation of the array a = o1, … , on . We call 

this approach a Standard one. The Standard 

Generation can be enabled or disabled at any 

moment. 

The main drawback of the Standard approach is 

that it requires that all the Executors execute exactly 

the same list of opcodes. It does not suit very well 

for the Contracts that work with the Internet. That’s 

why we offer an additional way for the formation of 

the array. 

The Contract Creator can foresee calls of a 

special function that forcibly adds to the array the 

specified value. It allows the Creator to require 

checking the correctness of some critical values. We 

call the approach the custom one. The values are 

stored in the same array with the Standard 
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Generation so these two approaches can be used 

together. 

6.1.2. Execution Log Aggregation 

The purpose of the aggregation is to create a short 

digest of the Execution Log the possession of which 

more convenient to prove. We offer using hashing 

for these purposes. It allows reacting on small 

changes in the input array and produces a non-

trivial-predictable random variable. At the same 

time, it doesn't matter that the algorithm is 

cryptographically strong: hash speed is much more 

important. In our experiments we use xxHash [21] 

that satisfies all mentioned requirements. 

6.2. Providing Proofs 

When the Executors approve the result of 

execution, they additionally approve the public 

information, necessary to verify the possession of 

secret information. 

The verification is made by the blockchain 

nodes. Since information in the blockchain is public, 

proof of the Secret Information possession should be 

made in a Zero-Knowledge manner. In such cases a 

standard tool is proving knowledge of the discrete 

logarithm of a group element. Usually, such a group 

is either group of elliptic curve points [22] or 

multiplicative group of integers modulo 𝑛. 

In order to prove the possession of the Secret 

information, the Executor should post a special 

transaction with the proof. In order to decrease the 

number of transactions, the Executor should have 

the possibility to provide proofs for several 

executions at once. Moreover, in order to be able to 

execute the next Calls before the transaction with 

Proof of Execution for the previous one is posted in 

the blockchain, the proof generated by the Executor 

should allow to verify that he has honestly executed 

all the Contract Calls starting with arbitrary Call in 

the past.  

This is the reason for introduction Cumulative 

Discrete Logarithm Zero Knowledge Proof. 

6.3. Proof of Execution Properties 

The purpose of the Proof of Execution is to 

determine those nodes who honestly execute Smart 

Contract in order to reward them. More formally the 

algorithm should satisfy the following conditions: 

 The Executors that honestly execute the 

Contract are able to generate correct Proof of 

Execution. 

– The Executors that do not execute the 

Contract are not able to generate correct Proof of 

Execution except for negligible probability. 

Both of these conditions are satisfied due to 

using Cumulative Zero-Knowledge Proof that 

satisfies Completeness, Soundness and Zero-

Knowledge properties:  

7. CUMULATIVE DISCRETE LOGARITHM 

ZERO-KNOWLEDGE PROOF  

Let G to be a cyclic group with generator g such 

that the finding the discrete logarithm in this group 

is computationally difficult.  

The standard problem of discrete logarithm 

zero-knowledge proof is formulated as following for 

given value 𝑦 ∈ 𝐺 prove knowledge of such value 𝑥 

that 𝑦 = 𝑔𝑥.  
In the [23] the following non-interactive proof 

is proposed: 

1. Peggy generates random value v  and 

computes t = gv. 

2. Peggy computes c = hash(g, y, t), i = 1, n̅̅ ̅̅̅. 

3. Peggy computes r = v − cx. 
4. The proof is the pair(t, r). 

The primitive algorithm for proving knowledge 

of several values 𝑥1, … , 𝑥𝑛  such that 𝑔𝑥𝑖 = 𝑦𝑖 , 𝑖 =
1, 𝑛̅̅ ̅̅̅  is generating 𝑛  independent single proofs for 

each value 𝑦𝑖 . But such an approach is not efficient 

from the memory point of view: it would be more 

convenient if the proof’s size was constant 

regardless of value of  𝑛. 

The approach described in [24] allows us to 

extend the standard algorithm of discrete logarithm 

knowledge proof for proving knowledge of several 

logarithms with a constant proof size: 

Peggy wants to prove Victor that she knows 

values 𝑥1, … , 𝑥𝑛 such that 𝑔𝑥𝑖 = 𝑦𝑖 , 𝑖 = 1, 𝑛̅̅ ̅̅̅. 

1. Peggy generates random value v  and 

computes t = gv. 

2. Peggy computes ci = hash(g, yi, t, P), i =
1, n̅̅ ̅̅̅ 

3. Peggy computes r = v − c1x1 − ⋯ − cnxn 

4. The proof is the pair (t, r). 

5. In order to verify the proof Victor computes 

values ci  and verifies the equality t = gr ⋅ gc1 ⋅ ⋯ ⋅
gcn. 

Nevertheless, such an approach requires that 

both, the Prover and the Verifier agree on the last 

proved value. As it is shown above, sometimes it is 

not possible to guarantee. Therefore, it is necessary 

to develop a mechanism that will not rely on the last 

proved value. A straightforward solution is each 

time generate a proof for all the values 𝑦1, … 𝑦𝑛. But 

despite the proof’s size is still constant, it is very 

non-efficient from the computational efficiency 

point of view: in order to generate and verify each 

proof it is necessary to process all preceding 

sequence values that makes the computational 

difficult of verifying 𝑛 proofs 𝑂(𝑛2). 
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Thus, an efficient algorithm must satisfy the 

next condition: 

 Each single Proof allows to verify 

knowledge of all the sequence values from the 

beginning to some element 𝑦𝑚. 

 Each Proof generation and verification is 

performed in time linear to the number of values for 

which the proof has not yet been generated and 

verified. 

 The size of the Proof does not depend on the 

number of elements in the sequence. 

We offer the Cumulative Discrete Logarithm 

Zero Knowledge Proof as the solution that satisfies 

all the conditions. 

The main idea behind the Cumulative Zero 

Knowledge Proof is borrowed from prefix sums. 

Prefix sum 𝑝1, … , 𝑝𝑛 of the array 𝑎1, … , 𝑎𝑛 being the 

sum of the first 𝑖 elements of the array allows finding 

the sum of any subarray 𝑎𝑚+1, … , 𝑎𝑛  in a constant 

time via finding the difference 𝑝𝑛 − 𝑝𝑚. 

In the same way Cumulative Zero Knowledge 

Proof allows verification of the knowledge of new 

values of a sequence via finding the “difference” of 

Proofs. 

The Cumulative Proof consists of two parts: 

Main Proof and Safety Proof. Below we describe 

the algorithm of the proof generation and 

verification. 

7.1. Cumulative Proof Generation 

Main Proof 

Let Peggy has already generated the Proof for 

values x1, … , xm  and now she would like to prove 

Victor that she possesses values x1, … , xn ,  n > 𝑚 

that are discrete logarithms of values y1, … yn base g. 

In order to generate the Main Proof Peggy 

1) computes ci = hash(g, yi, P) , i = m + 1, n̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  

where P is Peggy’s public key 

2) randomly picks v ∈ ℤl, where l is the size of 

the group G. 

3) computes tn = gv. 

4) computes  rn = v − c1x1 − ⋯ − cnxn  mod l  
The tuple b = (tn, rn) is called Main Proof. 

Safety Proof 

Unlike the original scheme for proving 

knowledge of a single discrete logarithm, the values 

of ci in Main Proof do not depend on value tn. This 

makes it very vulnerable. Safety Proof is an auxiliary 

part of Cumulative Proof and servers for The Safety 

Proof serves for the avoidance of fraudulent 

generation of the Main Proof. It allows proving that 

Peggy truly knows the value of the discrete 

logarithm of  tn  using standard Fiat–Shamir 

heuristic. 

 

In order to generate Safety Proof Peggy: 

1) randomly picks w ∈ ℤl; 
2) computes f = gw; 

3) computes d = hash(f, tn, P); 
4)computes k = w − dv mod l. 

The tuple q = (f, k) is called Safety Proof. 

7.2. Cumulative Proof Verification 

We assume that Victor has already verified the 

Cumulative Proof for values 𝑥1, … , 𝑥𝑚  with Main 

Proof (𝑡𝑚, 𝑟𝑚). If 𝑚 = 0 we assume that 𝑟𝑚 = 0 and 

𝑡𝑚 is equal to the neutral element of the group 𝐺.   

The Verification of the Cumulative Proof for 

values x1, … xn consists of two parts:  

Safety Proof Verification and Main Proof 

Verification. 

 

        Safety Proof Verification 
In order to verify whether the Safety Proof is 

valid, Victor: 

1) computes d = hash(f, tn, P);  

2) verifies the equality: f = gktn
d.  

If the equality is true, then Victor goes to Main 

Proof Verification else the entire Proof is invalid. 

Main Proof Verification 

In order to verify whether the Main Proof is 

valid, Victor:  

1)  computes ci = hash(g, yi, P), i = m + 1, n̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅;  

2) verifies the equality tntm
−1 = grn−rmym+1

cm+1 ⋅ ⋯ ⋅

yn
cn . 

If the equality is true then the entire Cumulative 

Proof is considered as a valid one. 

7.3. Cumulative Proof Correctness 

In this section we attempt to prove three 

properties of the proposed Cumulative Zero-

Knowledge Proof: completeness, soundness and 

zero-knowledge [12]. 

Completeness 

Completeness property provides that any honest 

Prover that is that one who possesses all values 

x1, … , xn will pass the verification. 

The completeness of the proposed Cumulative 

Proof follows from the next equality: 

tntm
−1 = gvng−vm

= grn+c1x1+⋯+cnxng−(rm+c1x1+⋯+cmxm)

= grn−rmgcm+1xm+1+⋯+cnxn

= grn−rmym+1
cm+1 ⋅ ⋯ ⋅ yn

cn 

Soundness 

The Soundness means that the Prover that does 

not really know values x1, … , xn   can pass the 

verification with negligible probability.  



Applied Aspects of Information Technology                            2021; Vol. 4 No. 3: 271–281 

278  ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

The original scheme requires computing the 

value c  based on the value of T . It allows 

guaranteeing that the Prover who does not know the 

Secret Information has to solve a difficult Problem of 

Discrete Logarithm Computing. Nevertheless such 

an approach does not suit our algorithm because 

otherwise, there will be no mutual annihilation of the 

corresponding terms during verification and 

completeness property will not be satisfied. 

Now we will prove that the introduction of 

Safety Proof in addition to Main Proof provides the 

same protection as in standard Fiat-Shamir Heuristic. 

Suppose that the Prover has already successfully 

passed Verification for values x1, … , xm  with Main 

Proof (tm, rm) hense he has proved that he knows all 

of them. Now he attempts to prove knowledge of 

x1, … , xn, n > 𝑚 without possession the knowledge 

about at least one of these values.  

The Prover should find such pair (tn, rn)  that 

tntm
−1 = grn−rmym+1

cm+1 ⋅ ⋯ ⋅ yn
cn . Then for such a 

Prover, there are two action strategies. 

First Strategy. The Prover does not fix the value 

of 𝑣 at the corresponding algorithm step. This allows 

him to select the value 𝑟𝑛  in an arbitrary way that 

uniquely identifies the value of 𝑡𝑛 =

𝑔𝑟𝑛−𝑟𝑚𝑡𝑚𝑦𝑚+1
𝑐𝑚+1 ⋅ ⋯ ⋅ 𝑦𝑛

𝑐𝑛 . But now to pass Safety 

Proof the Prover should find the value of the discrete 

logarithm of 𝑇 that is computationally difficult. 

Second Strategy. The Prover fixes the value of 𝑣 

at the corresponding algorithm step that uniquely 

identifies the value of 𝑡𝑛 = 𝑔𝑣  (thus, the Prover 

generates correct Safety Proof according to the 

algorithm) and now the Prover should find the value 

of 𝑟𝑛  such that 𝑔𝑟𝑛 = 𝑡𝑛𝑡𝑚
−1𝑔𝑟𝑚𝑦𝑚+1

−𝑐𝑚+1 ⋅ ⋯ ⋅ 𝑦𝑛
−𝑐𝑛 

that again makes him solve the discrete logarithm 

problem (the Prover cannot use the formula 𝑟𝑛 = 𝑣 −
𝑐1𝑥1 − ⋯ − 𝑐𝑛𝑥𝑛  mod 𝑙  since he does not know at 

least one of  𝑥𝑖). 

Zero-Knowledge 

Single Proof does not disclose more information 

than the original scheme so the Zero Knowledge of 

the single Proof follows from Zero Knowledge of the 

scheme. 

Two given proofs for values x1, … , xm  and for 

x1, … , xm , m < 𝑛  do not provide the Verifier with 

any additional information since in the difference 

rn − rm = (vn − vm) + cm+1xm+1 + ⋯ + cnxn  the 

value of vn − vm is unknown for the Verifier. 

7.4. Cumulative Proof Properties 

One of the important properties of the 

Cumulative Proof is that it allows proving 

knowledge of the sequence elements not from the 

very beginning but starting from the arbitrary 

element. It allows the Executors to start Smart 

Contract execution at any moment without the need 

of executing Calls that were initiated long time ago 

in order to be able to generate a valid Proof of 

Execution. 

8. COMPARISION WITH THE EXISTING 

SOLUTIONS  

The existing schemes of increasing scalability 

of Smart Contracts propose Sharding blockchain 

nodes [8] or executing Smart Contracts offchain [9, 

10]. The Concept proposed in the article in fact 

merges these ideas in such a way that Contracts are 

executed off chain but with formation of concrete 

Shards. 

Such scheme has a row of advantages 

comparing to the existing solutions: 

 The possibility of allocating an arbitrary 

amount of information for the Contract work. The 

property is achieved due to allocating the data on the 

Drives that allow information overwriting and are 

stored only on a subset of Network nodes. 

 The possibility of interaction with the 

Internet. The property is achieved due to a specially 

developed algorithm of agreement on the Smart 

Contract Execution result. 

– Incentivization of all nodes to honestly 

execute the Smart Contract. The property is achieved 

due to first proposed algorithm of Proof of Execution. 

9. CONCLUSIONS 

The work is devoted to the development of 

Sharding Concept for Decentralized Applications 

(DApps) that are expressed in form of Smart 

Contracts. 

The concept assumes that Smart Contract data is 

stored on specially designed decentralized file 

storages called Drive. The Drives unlike other 

solutions, such as [15, 16] allow decentralized 

collective-decision making. It allows considering 

them as separate Shards.  

The special algorithm of agreement on the 

results of Smart Contract execution is designed. Due 

to its ability to determine impossibility to find 

consensus on successful Contract Execution the 

interaction with internet becomes possible that 

favorably distinguishes the proposed system from the 

existing ones, in which obtaining information from 

the Internet requires special oracles. 

The main advantages of the proposed scheme 

comparing to the existing ones are lack of any 

centralization, the possibility of storing arbitrary 

large amount of information and interaction with the 

Internet. 
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One of the key features of the proposed system is 

the rewards distribution scheme. Unlike other 

systems it assumes all nodes who honestly execute 

the Smart Contract remuneration.  

In order to make it possible a special scheme 

called Proof of Execution is developed. It allows 

determining which nodes honestly receive their 

rewards based on the assumption that such nodes 

possess some information that is unavailable to the 

malicious nodes. The way of constructing the 

information as execution fingerprint is offered. 

A special cryptographic protocol necessary for 

making computational and memory complexity of 

Proof of Execution called  

Cumulative Zero-Knowledge Proof is developed. 

It allows proving the possession of expanding set of 

discrete logarithms without knowledge which part of 

the sequence has already been proved by the moment 

of new proof generation. This algorithm is 

superstructure over existing discrete logarithm ZK 

proof and so is applicable to any group in which the 

discrete logarithm is computationally difficult. The 

correctness of the protocol that consists of 

Completeness, Soundness and Zero-Knowledge is 

proven.  

Thus, the new concept of Smart Contracts 

Sharding with the possibility of interaction with the 

Internet is offered, the mechanism of incentivizing 

nodes to honestly execute the Smart Contracts is 

developed, the Cumulative Proof that is necessary 

for cryptographic strength of the specified 

mechanism is offered and its correctness is proven. 

The goals set in the article have been achieved. 
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АНОТАЦІЯ 

Останнім часом активно досліджуються децентралізовані мережі на основі технології блокчейн. Особливе місце в цих 

дослідженнях займають Смарт Контракти, що широко використовуються в багатьох галузях, таких як децентралізовані 

фінанси (DeFi), нерухомість, азартні ігри, виборчі процеси тощо. Тим не менше, можливість їх широкого застосування є 

досі не вирішеною проблемою. Це викликано тим, що вони мають обмежену гнучкість та масштабованість. Іншими 

словами, Смарт Контракти не можуть обробляти велику кількість викликів у секунду, відсутність прямого доступу до 

мережі Інтернет, неможливість роботи з великою кількістю даних тощо. Дана робота присвячена розробці концепції 

шардування для децентралізованих програм (DApps) у формі контрактів, написаних на WebAssembly. Пропонується 

концепція, яка передбачає, що кожен Контракт виконується набором випадково обраних вузлів, що дозволяє уникнути 

змови та запобігти атаці Сивілли. Під час дослідження були розроблені децентралізовані Сховища даних з можливістю 

колективного прийняття рішень. Запропонована схема формування Сховищ, яка передбачає, що кожен Контракт 

виконується набором випадково вибраних вузлів, що дозволяє уникнути змови та запобігти атаці Сивілли. Такий підхід 

дозволив використовувати Сховища як базовий рівень для Смарт Контрактів. Крім того, Сховища можна використовувати 

як автономне рішення для децентралізованого зберігання даних. Описано особливості узгодження результатів виконання 

Контрактів, що значно розширює можливості Контрактів порівняно з Ethereum Smart Contracts і, зокрема, дозволяє 

взаємодіяти Контрактам з Інтернетом. Розроблено концепцію винагороди, яка стимулює всі вузли, які чесно виконують 

Контракти, на відміну від інших систем, де винагороду отримує лише блок продюсер. Вона базується на спеціально 

розробленому Доказі Виконання (Proof of Execution) – спеціальному алгоритмі, який дозволяє виявляти всі вузли, які чесно 

виконують Контракти. Для того, щоб зробити Доказ Виконання більш компактним, розроблено кумулятивне розширення 

існуючого алгоритму доведення знання дискретного логарифму з нульовим розголошенням, що дає можливість послідовно 

доводити знання динамічно розширюваного набору значень з мінімальною обчислювальною та пам’ятною складністю. 

Таким чином, у цій статті досліджується нова концепція шардування Смарт Контрактів, що наділена економічними 

важелями. Основними перевагами запропонованого підходу є можливість взаємодії з мережею Інтернет та обробка великих 

об’ємів даних. Крім того, розроблено механізм стимулювання вузлів до чесного виконання Смарт Контрактів. А також 

пропонується Доказ Виконання, що необхідно для криптографічної міцності зазначеного механізму, та доведена його 

корректність. Отримані результати можуть бути використані для реалізації Смарт Контрактів у децентралізованих системах, 

зокрема, що працюють на основі технології Blockchain, особливо у випадку вимог до високої пропускної здатності та 

продуктивності. 

Ключові слова: доведення виконання; кумулятивне доведення; шардування; смарт контракти; доведення з нульовим 

розголошенням  
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