
Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

232 DOI: https://doi.org/10.15276/hait.03.2021.3 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

DOI: https://doi.org/10.15276/hait.03.2021.3

UDC 004.93.1

Methodology of neural network compression for multi-sensor

transducer network models based on edge computing principles

Ivan M. Lobachev1)

ORCID: https://orcid.org/0000-0002-4859-304X; lobachev.i.m@gmail.com. Scopus ID: 57192379296
Svitlana G. Antoshchuk1)

ORCID: https://orcid.org/0000-0002-9346-145X; asg@opu.ua. Scopus ID: 8393582500

Mykola A. Hodovychenko1)

ORCID: https://orcid.org/0000-0001-5422-3048; nick.godov@gmail.com. Scopus ID: 57188700773
1) Odessa National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ABSTRACT

This paper focuses on the development of a methodology to compress neural networks that is based on the mechanism of prun-

ing the hidden layer neurons. The aforementioned neural networks are created in order to process the data generated by numerous

sensors present in a transducer network that would be employed in a smart building. The proposed methodology implements a single

approach for the compression of both Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) that are used

for the tasks of classification and regression. The main principle behind this method is based on the dropout mechanism, which is

employed as a regulation mechanism for the neural networks. The idea behind the method proposed consists of selecting optimal

exclusion probability of a hidden layer neuron, based on the redundancy of the said neuron. The novelty of this method is the usage

of a custom compression network that is based on an RNN, which allows us to determine the redundancy parameter not just in a sin-

gle hidden layer, but across several layers. The additional novelty aspect consists of an iterative optimization of the network-

optimizer, to have continuous improvement of the redundancy parameter calculator of the input network. For the experimental evalu-

ation of the proposed methodology, the task of image recognition with a low-resolution camera was chosen, the CIFAR10 dataset

was used to emulate the scenario. The VGGNet Convolutional Neural Network, that contains convolutional and fully connected lay-

ers, was used as the network under test for the purposes of this experiment. The following two methods were taken as the analogous

state of the art, the MagBase method, which is based on the sparcification principle as well as the method which is based on rarefied

representation by employing the approach of rarefied encoding SFAC. The results of the experiment demonstrated that the amount of

parameters in the compressed model is only 2.56 % of the original input model. This has allowed us to reduce the logical output time

by 93.7 % and energy consumption by 94.8 %. The proposed method allows to effectively using deep neural networks in transducer

networks that utilize the architecture of edge computing. This in turn allows the system to process the data in real time, reduce the

energy consumption and logical output time as well as lower the memory and storage requirements of real-world applications.

Keywords: Smart Building; Internet of Things; Neural Network Compression; Network pruning; Sparse Representation; Re-

current Neural Network; Long Short-Term Memory

For citation: Lobachev I. M., Antoshchuk S. G., Hodovychenko M. А. Methodology of neural network compression for multi-sensor trans-

ducer network models based on edge computing principles. Herald of Advanced Information Technology. 2021; Vol. 4 No. 3: 232–243.

DOI: https://doi.org/10.15276/hait.03.2021.3

INTRODUCTION, FORMULATION OF THE

PROBLEM

In recent years we have seen a wide application

of machine learning principles, especially in Internet

of Things (IoT) systems, this is explained in part by

the availability of small, inexpensive computational

devices [1].

Approaches that are based on traditional meth-

ods of machine learning, require manual attribute

selection, this lowers their ability to generalize on

new data sets that do not contain information about

the distribution of the data [2]. As a result, the im-

plementations based on deep neural networks be-

came the dominating type in many areas, including

smart buildings, agriculture, motion and gesture

© Lobachev, I., Antoshchuk, S.,

 Hodovychenko, M., 2021

recognition etc. [3, 4]. The main reason behind this

is that neural networks allow to automatically select

attributes from a large volume or raw data.

This allows the system to exclude the human

factor and obtain a high degree of solution efficiency

in the neural network.

Among the most popular types of neural net-

works, one could highlight Convolutional Neural

Networks (CNN), Fully Connected Neural Networks

(FC), and Recurrent Neural Networks (RNN). Mod-

els based on neural networks can include one or

more types of neural networks in varying combina-

tions. Convolutional neural networks extract spatial

attributes, while recurrent neural networks are

geared more towards time attribute extraction from

the data set. The usage of these attributes is the key

to the high efficiency of neural networks when deal-

https://doi.org/
mailto:lobachev.i.m@gmail.com
mailto:asg@opu.ua
mailto:nick.godov@gmail.com
https://doi.org/10.15276/hait.03.2021.3

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 233

ing with tasks such as classification, regression and

forecasting [5, 6].

Despite these advantages, the usage of models

based on machine learning requires a large pool of

resources, including energy, processing capability

and data storage.

These requirements lower the feasibility of em-

ployment of neural networks in devices with limited

resources [7].

Usually, extensive resource requirements be-

come the bottleneck when developing IoT solutions,

where the output of the neural network is needed in

real-time.

One of the methodologies to decrease resource

demand of neural networks is the compression of

neural networks.

Compressed neural networks possess several

advantages when compared to traditional neural

networks:

 computational power demand: a vast number

of floating-point operations (FLOPs) involved in the

operation of DNN (Deep Neural Network) can ex-

ceed the limited processing capacity of the IoT

nodes [11, 12], [13, 14].

Therefore, it would be useful to use DNN com-

pression to reduce processing power requirements

[15]:

 time consumption: the training and working

time of a DNN model is significantly long, which

makes it difficult to perform model inference in real

time [16, 17]. DNN compression techniques thus

provide a higher degree of quickness in both training

and inference tasks;

 memory capacity: neural networks achieve a

high performance when using large number of neu-

rons, which in turn requires large memory consump-

tion to hold and process the model [8, 9], [10]. As a

result, compression could lower the memory re-

quirements. This simplifies and makes it more eco-

nomical to deploy compressed neural networks on

devices with limited memory resources;

 power consumption: compression of neural

network also lowers the energy consumption for data

processing [19, 20], [21]. This improves the ease of

deploying the compressed neural network models on

battery-power IoT devices;

 privacy: the transfer of data from an edge

node to the cloud leads to high probability of securi-

ty breaches and confidentiality compromises [18].

Therefore, it would be beneficial to process data

with neural networks in-place, which helps maintain

confidentiality and ensures data security.

A feature of IoT systems that are used in the

field of creating smart buildings is the use of a varie-

ty of sensors of various types, with different dimen-

sions of data as well as update frequency for new

data, which consider the spatial and temporal char-

acteristics of their environment.

Thus, the purpose of this study is to develop a

compression method that would provide a unified

approach to the compression of various types of neu-

ral networks to process multisensory data in the de-

velopment of smart buildings.

1. LITERATURE REVIEW

Compression techniques of deep neural net-

works can be broken down into five types, depend-

ing on the approach to the compression process

used: network pruning, sparse representation, data

precision, knowledge distillation, and other ap-

proaches. Table 1 lists the main categories and sub-

categories of compression techniques.

Network pruning. This compression approach

is implemented by removing individual components

of neural network: filters, channels, layers of indi-

vidual neurons in order to get compressed model.

Compressed model uses less memory, con-

sumes less energy and allows to get inference faster

than uncompressed model with the same accuracy or

with acceptable loss of accuracy.

To measure the importance and contribution of

neural network component to the final network per-

formance, we could compare network accuracy

when component is removed from the model [17].

Pruning is applied step by step to the neural network

to exclude only components that will not or mini-

mally decrease network performance.

Pruning techniques can be further divided into

four subcategories, based on components to be

pruned: channel pruning, filter pruning, layer prun-

ing and connection pruning.

Pruning methods could minimize the amount of

used storage and requirements for the computing

power of the node on which the compressed neural

network is deployed.

Sparse representation. Sparse representation

uses the sparsity which is present in the weight ma-

trices of the neural network model. In sparse repre-

sentation techniques, the weights there are zero or

close to zero are excluded from the matrix, which

lowers the power and computational power require-

ments of the compressed model. Connections in the

network with similar weights are multiplexed, where

in-place of multiple weights with a single connection

is replaced with a single weight with the multiplex

connection.

Sparse representation techniques could be di-

vided into quantization, multiplexing, and weight

sharing. The main idea behind the sparse representa-

tion methods is to reduce the weight matrix without

losing the performance of the DNN model.

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

234 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

Data precision. Data precision techniques re-

duces the number of bits required for storing the

weights in the weight matrices 𝑊. For example, the

FLOPs in the default DNN model requires 32 bits,

which can be replaced with integer datatype, that

requires only 8 bits. Similarly, we can use binary, 6

bits, 16 bits for replacing 32 bits FLOPs in the DNN

model. We categorized the existing literature on

DNN compression using bits precision into three

sub-categories, namely, estimation using integer,

low bits representation, and binarization.

Table 1. Overview of compression techniques

categories

Compression

techniques
Subcategories

Network

pruning
Channel pruning [13,14], [15,16]
Filter pruning [17,18], [19,20]
Connection pruning [21,22], [23]
Layer pruning [24,25]

Sparse repre-

sentation
Quantization [26], [27]
Multiplexing [28]
Weight sharing [29]

Data preci-

sion
Estimation using integer [30]
Binarization [31]
Low bit representation [32]

Knowledge

distillation
Logits transfer [33]
Teacher assistant [34]
Domain adaptation [35]

Other methods [36,37], [38]
Source: compiled by the authors

Knowledge distillation. In a DNN model, the

term knowledge distillation is defined as the process

of transferring the generalization ability of the com-

plex model (teacher) to the compact model (student)

to improve its performance. Knowledge distillation

provides a mechanism to overcome the accuracy

tradeoff due to the DNN compression. The training

of the student model using knowledge distillation

improves its generalizability so that it can mimic

teacher-like behavior to predict the probabilities of a

class label.

We could further divide knowledge distillation

techniques into logit transfer techniques, teacher-

assistant techniques, and domain adaptation meth-

ods.

Other methods. DNN compression methods

that do not fit into any of the above four categories

are classified as other. These include DNN compres-

sion techniques that perform DNN modeling in such

a way that they can be easily deployed on mobile

devices. Typically, these methods consist of allocat-

ing tasks to reduce memory usage or leverage paral-

lel processing mechanisms.

Analysis of neural network compression meth-

ods has shown the relevance of developing a method

that provides a unified approach to the compression

of machine learning models that use a combination

of different types of neural networks to process mul-

tisensory data in the field of smart building systems.

2. COMPRESSION METHOD DESIGN

The proposed method is based on the use of the

well-known deep neural network regularization

method known as "dropout" or exclusion. The drop-

out operation assigns to each neuron of the network

of hidden layers the probability of its exclusion.

During the screening process, elements of hidden

layers can be excluded based on a probability pa-

rameter, resulting in a network structure with fewer

elements. The main parameter of this operation is

the probability of exclusion, which must be selected

in such a way as to form an optimal network struc-

ture that preserves the accuracy of work and mini-

mizes resource consumption. The proposed method

is aimed at finding the optimal exclusion probability

for each element of the hidden layer.

To obtain the parameter of the optimal proba-

bility of exclusion in the proposed method, the net-

work parameters themselves are used. For this, the

parameter of redundancy of the node of the hidden

layer of the neural network is introduced. From the

point of view of the compression process of the

model, the element with higher redundancy has a

higher probability of being excluded.

A new idea within this method is the usage of a

special neural network, which plays the role of an

optimizer (network-optimizer), which takes as input

the weights of each layer of the original network,

finds the redundancy value, and estimates the proba-

bility of dropout for each neuron of the hidden layer.

Within the compression process, the original

neural network and network-optimizer are enhanced

iteratively to reduce the value of loss function.

The proposed technique could be described as a

sequence of steps:

1) dropout operations are added to the hidden

layers of the source neural network, which randomly

eliminate nodes with probability 𝑝(𝑙). The input and

output layers of the neural network has a fixed size

and do not affect by compression method;

2) initialization of network-optimizer. Each

layer intended for compression represented as the

weight matrix 𝑊(𝑙), from which the network-

optimizer receives the values of the redundancy pa-

rameter, after which the optimal probabilities of

dropout each element of the hidden layer 𝑝(𝑙), which

are then used in the dropout operation in the original

neural network;

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 235

3) an iterative process of enhancing of the net-

work-optimizer and the source network conducted.

The network-optimizer is enhanced to get more ac-

curate dropout probabilities, which will produce a

more accurate compressed structure of the original

neural network. The original neural network is en-

hanced to achieve a more efficient structure.

2.1. Dropout routine

The basic idea is that we regard neural networks

with dropout operations as Bayesian neural networks

with Bernoulli variational distributions.

For the full connected layers, the dropout opera-

tion can be described as

 𝑧[𝑗]
(𝑙)
~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙)
),

�̃�
(𝑙)
= 𝑊(𝑙)𝑑𝑖𝑎𝑔(𝑧(𝑙)),

𝑌(𝑙) = 𝑋(𝑙)�̃�(𝑙) + 𝑏(𝑙),

𝑋(𝑙+1) = 𝑓(𝑌(𝑙)),

(1)

where: 𝑙 = 1,… , 𝐿 – is the layer number in the net-

work; 𝑊(𝑙) ∈ 𝑅𝑑
(𝑙−1)×𝑑(𝑙) – weight matrix for each

layer 𝑙; 𝑏(𝑙) ∈ 𝑅𝑑
(𝑙)

 – bias vector; 𝑋(𝑙) ∈ 𝑅1×𝑑
(𝑙−1)

 –

the input; 𝑓(∙) – activation function.

As shown in (1), each hidden unit is controlled

by a Bernoulli variable. In the default dropout meth-

od, the success probabilities of 𝑝[𝑗]
(𝑙)

 usually is as-

signed to the same constant 𝑝 for all neurons of hid-

den layers. Proposed method estimated individual

probabilities for each neuron to compress the neural

network structure.

In convolutional neural networks, default opera-

tion is convolution. Convolution can be represented

as a linear operation as shown in (1).

For some layer 𝑙, we define 𝐾(𝑙) = {𝐾𝑘
(𝑙)
} for

𝑘 = 1,… , 𝑐(𝑙) as the convolutional neural network

kernels, where 𝐾𝑘
(𝑙) ∈ 𝑅ℎ

(𝑙)×𝜔(𝑙)×𝑐(𝑙−1) is the kernel

of network with height ℎ(𝑙), width 𝜔(𝑙) and channel

𝑐(𝑙−1). The input matrix of layer 𝑙 defines as �̂�
(𝑙)
∈

𝑅ℎ̂
(𝑙−1)

×�̂�
(𝑙−1)

×𝑐(𝑙−1)with height ℎ̂
(𝑙−1)

, width �̂�(𝑙−1)
and channel 𝑐(𝑙−1).

From the input �̂�(𝑙) we get dimensional section

ℎ(𝑙) × 𝜔(𝑙) × 𝑐(𝑙−1) with stride 𝑠, and turn these sec-

tions into vectors. These vectors are the rows of in-

put representation 𝑋(𝑙) ∈ 𝑅𝑛×(ℎ
(𝑙)𝜔(𝑙)𝑐(𝑙−1)), where 𝑛

– number of vectors. The vectorized kernels form

the columns of the weight matrix 𝑊(𝑙) ∈

𝑅(ℎ
(𝑙)𝜔(𝑙)𝑐(𝑙−1))×𝑐(𝑙).

With this transformation, dropout operations

can be applied to convolutional neural networks ac-

cording to (1). The composition of pooling and acti-

vation functions can be regarded as the nonlinear

function 𝑓(∙) in (1).

In convolution neural network we exclude ker-

nels instead of distinct neurons. Therefore, proposed

technique manages to prune kernels from the convo-

lutional network.

For the recurrent neural network, we take a

multi-layer LSTM network as an example. The

LSTM dropout operation can be described as

 𝑧[𝑗]
(𝑙)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙)),

(

𝑖
𝑓
𝑜
𝑔
) =

(
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑡𝑎𝑛ℎ

)𝑊(𝑙) (
ℎ𝑡
(𝑙−1)

⊙𝑧(𝑙−1)

ℎ𝑡−1
(𝑙)
⊙𝑧(𝑙)

),

𝑐𝑡
(𝑙)
= 𝑓 ⊙ 𝑐𝑡−1

(𝑙)
+ 𝑖 ⊙ 𝑔,

ℎ𝑡
(𝑙) = 𝑜 ⊙𝑡𝑎𝑛ℎ tanh (𝑐𝑡

(𝑙)),

(2)

where: 𝑙 = 1,… , 𝐿 – is the layer number and 𝑡 =
1,… ; 𝑇 – is the step in the recurrent neural network;

Element-wise multiplication is denoted by ⊙; oper-

ators 𝑠𝑖𝑔𝑚 и 𝑡𝑎𝑛ℎ defines sigmoid function and

hyperbolic tangent respectively; the vector ℎ𝑡
(𝑙) ∈

𝑅𝑛
(𝑙)

 is the output of step 𝑡 at layer 𝑙; the vector

ℎ𝑡
(0)
= 𝑥𝑡 is the input for the whole network at step

𝑡; the matrix 𝑊(𝑙) ∈ 𝑅4𝑛
(𝑙)×(𝑛(𝑙−1)+𝑛(𝑙)) is the weight

matrix at layer 𝑙.
As shown in (2), proposed method uses vector

of Bernoulli random variables 𝑧(𝑙) to estimate drop-

out among distinct time steps in each network layer,

while individual Bernoulli variables are used for dif-

ferent steps in the LSTM dropout. Proposed method

tries to reduce the number of hidden dimensions in

the blocks of LSTM. In case of using GRUs, dropout

routine can be carried out similarly.

2.2. Design of network-optimizer

A neuron in the hidden layer, which is connect-

ed to model parameter with high redundancy value,

would have a higher chance to be excluded.

Network-optimizer is designed in such way,

that it takes the weights of neural network {𝑊(𝑙)} as

inputs, estimates redundancy value in these weights

and generates dropout probabilities {𝑝(𝑙)} for neu-

rons of hidden elements that can be used to com-

press network structure.

A default approach is to train a distinct neural

network for each layer of original neural network.

Though, redundancy value is shared between differ-

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

236 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

ent layers, the proposed technique obtains LSTM as

the architecture for network-optimizer to learn re-

dundancy value among multiple layers.

According to the (2), the weight in layer 𝑙 of the

neural network can be represented as a single matrix

𝑊(𝑙) ∈ 𝑅
𝑑𝑓
(𝑙)
×𝑑𝑑𝑟𝑜𝑝

(𝑙)

, where 𝑑𝑑𝑟𝑜𝑝
(𝑙)

 – defines the di-

mension that dropout operation is applied and 𝑑𝑓
(𝑙)

defines the dimension of features within each ex-

cluded element.

The weight matrix of LSTM at layer 𝑙 can be repre-

sented as 𝑊(𝑙) ∈ 𝑅4∙(𝑛
𝑙−1)+𝑛𝑙)×𝑛(𝑙), where 𝑑𝑑𝑟𝑜𝑝

(𝑙) =

𝑛(𝑙) and 𝑑𝑓
(𝑙) = 4 ∙ (𝑛(𝑙−1) + 𝑛(𝑙)). Since we take

weights from the original network layer by layer

𝑊 = {𝑊(𝑙)}, with 𝑙 = 1,… , 𝐿 as the input of the

network-optimizer. Instead of using a default LSTM

as the architecture of optimizer, we apply a modified

𝑙-step model described as

(

 𝑣𝑖

𝑇

𝑣𝑓
𝑇

𝑣𝑜
𝑇

𝑣𝑔
𝑇
)

= 𝑊𝑐

(𝑙)𝑊(𝑙)𝑊𝑖
(𝑙),

(

𝑢𝑖
𝑢𝑓
𝑢𝑜
𝑢𝑔)

=𝑊ℎℎ𝑙−1,

(
𝑖
𝑓
𝑜
𝑔

) = (
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑡𝑎𝑛ℎ

)

(

(
𝑣𝑖
𝑣𝑓
𝑣𝑜
𝑣𝑔

)+ (
𝑢𝑖
𝑢𝑓
𝑢𝑜
𝑢𝑔

)

)

,

𝑐𝑖 = 𝑓⊙ 𝑐𝑙−1 + 𝑖 ⊙ 𝑔,

ℎ𝑙 = 𝑜⊙𝑡𝑎𝑛ℎ tanh(𝑐𝑙),

𝑝(𝑙) = 𝑝𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑜
(𝑙)ℎ𝑖),

𝑧[𝑗]
(𝑙)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙)),

(3)

We define 𝑑𝑐 as the dimension of the LSTM

hidden state. Then 𝑊(𝑙) ∈ 𝑅𝑑𝑓
(𝑙)
×𝑑𝑑𝑟𝑜𝑝

(𝑙)

, 𝑊𝑐
(𝑙) ∈

𝑅4×𝑑𝑓
(𝑙)

, 𝑊𝑖
(𝑙) ∈ 𝑅𝑑𝑑𝑟𝑜𝑝

(𝑙)
×𝑑𝑐, 𝑊ℎ ∈ 𝑅

4𝑑𝑐×𝑑𝑐 and

𝑊𝑜
(𝑙) ∈ 𝑅𝑑𝑑𝑟𝑜𝑝

(𝑙)
×𝑑𝑐. The set of parameters of network-

optimizer is defined as 𝜙, where 𝜙 =

{𝑤𝑐
(𝑙)
, 𝑊𝑖

(𝑙)
, 𝑊ℎ, 𝑊𝑜

(𝑙)}. The matrix 𝑊(𝑙) is the input

matrix for step 𝑙 in the network-optimizer, which is

also the parameters of layer of the original network

in (1) or (2).

In comparison with the default LSTM version

that requires vectors as inputs, the modified LSTM

model keeps the structure of the original matrix and

uses less parameters to obtain the redundancy among

the dropout elements.

Further, 𝑊𝑐
(𝑙)

 and 𝑊𝑖
(𝑙)

 transform original

weight matrix 𝑊(𝑙) with different sizes into fixed

size matrix. The vector 𝑧(𝑙) serves as template and

probability 𝑝(𝑙) is the exclude probabilities for the

layer in the network used in (1) and (2), which is

also the dropout learnt through observing the redun-

dancy of the source network.

2.3. Network compressing routine

In formulas (1) and (2) custom dropout routines

were described, which are used on the source net-

work that should be compressed and network-

optimizer used to get dropout probabilities.

Here we will discuss the details of the com-

pressing routine. It enhances the source neural net-

work and the network-optimizer in a step-by-step

manner and enables the network-optimizer to step-

wise compress the original neural network with soft

deletion.

We define the source neural network as

𝐹𝑊(𝑥|𝑧) and we call it opponent. It gets 𝑥 as net-

work input and produces predictions based on drop-

out 𝑧 and parameters 𝑊, that refer to a weight 𝑊 =

{𝑊(𝑙)}. We assume that 𝐹𝑊(𝑥|𝑧) was trained be-

forehand. We define the network-optimizer by

𝑧~𝜇𝜙(𝑊). It takes the weights of the opponent as

inputs and generates the probability distribution of

the mask vector 𝑧 based on its own parameters 𝜙. In

order to enhance the optimizer to exclude hidden

elements in the opponent, proposed technique fol-

lows the function

 𝐿 = 𝐸𝑍~𝜇𝜙[𝐿(𝑦, 𝐹𝑤(𝑧))]

= ∑ 𝜇ф(𝑊)

𝑧~{0,1}|𝑧|

∙ 𝐿(𝑦, 𝐹𝑊(𝑥|𝑧)),

(4)

where 𝐿(∙,∙) is the function of the opponent. This

function can be described as the expected loss of the

network over the dropout generated by the optimiz-

er.

Proposed technique enhances the optimizer and

opponent in a stepwise way. It reduces loss function

value as described in (4) by using the gradient de-

scent on optimizer and opponent step by step. Since

dropout operations could be described as discrete

sampling routines, we could not use backpropaga-

tion algorithm directly.

As a result, we apply likelihood estimator to get

the gradient value over 𝜙

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 237

 𝛻𝜙𝐿 =∑ 𝛻𝜙𝜇𝜙(𝑊) ∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))

𝑧

=∑ 𝜇
𝜙
(𝑊)𝛻𝜙 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜇𝜙(𝑊)

𝑧

∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))

= 𝐸𝑧~𝜇𝜙 [𝛻𝜙 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜇𝜙(𝑊)

∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))] ∑ 𝜇
ф
(𝑊)

𝑧~{0,1}|𝑧|

∙ 𝐿(𝑦, 𝐹𝑊(𝑥|𝑧)).

(5)

An estimator for (5) can be

 ∇𝜙�̂� = ∇𝜙 log 𝜇𝜙(𝑊) ∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)),

 𝑧~𝜇𝜙.
(6)

The gradient over 𝑊(𝑙) ∈ 𝑊 is

 𝛻𝑊(𝑙)𝐿 =∑ 𝜇
𝜙
(𝑊)

𝑧

∙ 𝛻
𝑊(𝑙)
𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))

= 𝐸𝑧~𝜇𝜙[𝛻𝑊(𝑙)𝐿(𝑥|𝑧)].

(7)

In similar way, an estimator for (7) can be

 𝛻𝑊(𝑙)𝐿̂ = 𝛻𝑊(𝑙)𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)), 𝑧~𝜇𝜙. (8)

Although the estimator (6) is an unbiased esti-

mator, it will produce higher variance. A higher var-

iance of the estimator can make the convergence

slower. This means that variance reduction tech-

niques are typically required to make the optimiza-

tion feasible in practical tasks.

First variance lowering approach is to subtract a

𝑐 from signal 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) in (5) which keeps the

gradient. We are tracking the average of the signal

𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) defined by 𝑐, and subtract 𝑐 from the

gradient (6).

Second variance lowering approach is to keep

track of the average of the signal variance 𝑣, and

divides the learning signal by (1, √𝜐) .

Combing the aforementioned two variance low-

ering approaches, the final estimator (6) for gradient

becomes

 𝛻𝜙�̂�
= 𝛻𝜙 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜇𝜙(𝑊)

∙
𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) − 𝑐

(1, √𝜐)
 , 𝑧~𝜇𝜙.

(9)

where с and 𝜐 are the moving average of mean and

the moving average of variance of signal

𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) respectively.

In comparison with other compressing tech-

niques that deleted weights without recovery capa-

bility, the proposed method used so-called “soft”

deletion by iteratively lowering exclusion probabili-

ties of neurons with a factor 𝛾 ∈ (0, 1). During the

experiments, the factor 𝛾 was 0.5.

Proposed method could not make optimal drop-

out decision at the beginning, soft deletion technique

provides possibility to recover excluded element.

This approach reduces the risk network degradation.

Within the compression routine, threshold of

dropout, defined as 𝜏 increases from 0 with the step

of ∇. The neurons of hidden layers with dropout, that

is less than the threshold, will be given decay on

probability, i.e., �̂�[𝑗]
(𝑙)
← 𝛾 ∙ 𝑝[𝑗]

(𝑙)
.

In conclusion, the operation in optimizer (3) can

be described as

𝑧[𝑗]
(𝑙)
~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙) ∙ 𝛾
𝑙𝑝[𝑗]
(𝑙)
≤𝜏
) (10)

where: 𝑙 – is the function; 𝛾 ∈ (0,1) is the factor

and 𝜏 ∈ [0,1) – is the threshold. Since the operation

of lowering dropout probability with the predefined

factor 𝛾 is differentiable, we can still optimize the

opponent and the network-optimizer through (8) and

(9).

The compression process will stop when the

percentage of left number of parameters in 𝐹𝑊(𝑥|𝑧)

is smaller than a user-defined value 𝛼 ∈ (0,1).
Final step of compression is fine-tuning the re-

sulting network with a mask �̂�, which is decided by

the value 𝜏. Mask generation (10) will be described as

�̂�[𝑗]
(𝑙)
= 𝑙𝑝[𝑗]

(𝑙)
> 𝜏. (11)

3. EXPERIMENTAL RESULTS

For an experimental evaluation of the devel-

oped technique, we will test its work in relation to

the compression of the convolutional neural network

VGGNet in the problem of image recognition on the

CIFAR10 dataset.

The experiment was conducted on Intel Edison

as a hardware platform. Intel Edison uses a Intel At-

om SoC with a 500 MHz frequency and has a 1GB

of RAM and a 32Gb flash card. All experiments

were carried out using only the power of the CPU.

The training of neural networks took place on a

desktop using a GeForce RTX 3060 video card. The

compression process of the trained networks also

took place on a desktop. All compressed neural net-

works worked using the Theano framework using

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

238 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

only the processor's power. Matrix multiplication

operations were optimized with BLAS and Sparse

BLAS algorithms. No additional optimization was

conducted.

For comparison with the proposed neural net-

work compression method, MagBase [39] and SFAC

[40] algorithms were taken.

MagBase is a magnitude-based network prun-

ing algorithm. The algorithm prunes weights in con-

volutional kernels and fully connected layer based

on the magnitude. It retrains the network connec-

tions after each pruning step and can recover the

pruned weights. For convolutional and fully con-

nected layers, MagBase searches the optimal thresh-

olds separately.

SFAC is a sparse-coding and factorization-

based algorithm. The algorithm simplifies the fully

connected layer by finding the optimal code-book

and code based on a sparse coding technique. For

the convolutional layer, the algorithm compresses

the model with matrix factorization methods. We

greedily search for the optimal code-book and fac-

torization number from the bottom to the top

layer.

The task is image recognition through a low-

resolution camera. During this experiment, we use

CIFAR102 as our training and testing dataset. The

CIFAR-10 dataset consists of 60000 32x32 color

images in 10 classes, with 6000 images per class.

There are 50000 training images and 10000 test im-

ages. It is a standard testing benchmark dataset for

the image recognition tasks. While not necessarily

representative of seeing objects in the wild, it offers

a more controlled environment for a comparison.

VGGNet was used as network-opponent. This

architecture was chosen to illustrate that proposed

approach could compress deep and large network

structures. Network structure is shown in Table 2.

Final compression structure for proposed meth-

od and analogues is also described in Table 2. Pro-

posed method carried out more efficient compres-

sion. Network-optimizer uses enhanced LSTM net-

work to learn redundancy values across network-

opponent layers.

Alternative methods used redundancy infor-

mation only within distinct network layer. Proposed

method uses global redundancy values among hid-

den layers to compress network in a more efficient

manner. Also, there is a performance loss by net-

work, compressed by SFAC method. It’s safe to as-

sume that performance degradation is a result of ab-

sence of fine-tuning routine.

The compromise between network accuracy

and memory consumption is shown in Fig 1. We

could see that proposed technique reaches a better

performance with the usage of standard weight ma-

trix representation, while alternative methods use

sparse representation.

Fig. 1. Compromise between accuracy and

memory consumption

Source: compiled by the authors

The compromise between accuracy and

execution time is show in Fig. 2. Proposed approach

achieves better performance in comparison with

alternative methods. Compressed network takes

83,4ms for inference with the same accuracy, which

is 93,7 % quicker than original network.

MagBase algorithm uses less execution time

compared with SFAC in this experiment. Therefore,

factorizing 2d kernel into two 1d kernels helps less

in reducing computation time. SFAC fails to

compress the original network into a small size

while keeping the original performance, because

SFAC avoids the fine-tuning.

Fig. 2. Compromise between accuracy and

 execution time

 Source: compiled by the authors

The compromise between accuracy and power

consumption is shown in Fig. 3. Proposed technique

lowers power consumption by 94,8 % in comparison

with the original network. It facilitates development

of a long-lasting deep neural network models in

nodes with energy deficit.

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 239

Table 2. Experimental results over VGGNet

 VGGNet Proposed method MagBase SFAC

Layers
Neurons

of hidden

layers

Parameters Neurons

of hidden

layers

Percent of

parameters

left

Percent of

parameters

left

Percent of

parame-

ters left
Convolutional 1(3x3) 64 1600 26 42.5 % 53.5 % 93.6 %

Convolutional 2(3x3) 64 35 600 41 31.8 % 40.3 % 57.7 %

Convolutional 3(3x3) 128 72 700 55 30.7 % 52.7 % 85.7 %

Convolutional 4(3x3) 128 145 600 64 22.4 % 67.2 % 56.2 %

Convolutional 5(3x3) 256 292 700 101 21.2 % 71.7 % 85.5 %

Convolutional 6(3x3) 256 584 300 94 15.3 % 65.1 % 56.2 %

Convolutional 7(3x3) 256 584 300 85 13.1 % 61.8 % 56.3 %

Convolutional 8(3x3) 512 1 173 500 118 8.2 % 36.8 % 85.7 %

Convolutional 9(3x3) 512 2 356 200 92 4.2 % 10.3 % 56.2 %

Convolutional 10(3x3) 512 2 353 700 61 2.1 % 3.7 % 56.8 %

Convolutional 11(2x2) 512 1 045 100 125 3.2 % 3.2 % 84.7 %

Convolutional 12(2x2) 512 1 045 100 117 5.4 % 1.6 % 84.5 %

Convolutional 13(2x2) 512 1 045 100 142 6.3 % 2.2 % 84.1%

Fully connected 1 4096 2 094 700 23 0.18 % 2.3 % 95.3 %

Fully connected 2 4096 16 776 700 364 0.05 % 0.34 % 127 %

Fully connected 3 10 40 500 10 9.2 % 18.2 % 90.6 %

Total 29 647 400 2.56 % 7.07 % 108 %

Accuracy 90.2 % 90.2 % 90.2 % 86.7 %
Source: compiled by the authors

Fig. 3. Compromise between accuracy and

power consumption

Source: compiled by the authors

CONCLUSIONS

In this paper, a method for the compression of

neural networks is proposed, which is based on the

mechanism of pruning neurons of the hidden layers.

Pruning is based on a modified dropout mechanism,

in which, instead of selecting a single probability of

excluding neurons, the optimal parameter of the ex-

clusion probability is selected for each neuron. To

find the optimal probability of excluding each neu-

ron, the redundancy parameter of the hidden layer

neuron is used, which is estimated using a special

recurrent neural network, which makes it possible to

consider the spatial connections between neurons on

different layers of the compressible network.

For experimental verification of the developed

method, the problem of image recognition using a

low-resolution camera on the CIFAR10 dataset was

taken; the convolutional neural network VGGNet,

which contains convolutional and fully connected

layers, was used as a test network. As analogous

methods, we took a method based on the principle of

network pruning (MagBase), as well as a method

based on sparse representation using the sparse cod-

ing method (SFAC).

Experiments showed that proposed method

manages to obtain compressed structure with 2,56 %

of original network parameters number. This com-

pression results in lowering the network inference

time (by 93,7 %) and power consumption by 94,8 %.

Possible directions for the continuation of the

work are the further study of dependencies between

the structure of the neural network and the efficiency

of its operation, which will further reduce the infer-

ence time and energy consumption.

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

240 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

REFERENCES

1. Hussain, F., Hussain, R., Hassan, S. & Hossain, E. “Machine learning in iot security: current solu-

tions and future challenges”. IEEE Communications Surveys & Tutorials. 2020; Vol. 22 No. 3: 1686–1721,

https://www.scopus.com/authid/detail.uri?authorId=55555819300. DOI: https://doi.org/10.1109/COMST.

2020. 2986444.

2. Lobachev, I. M., Antoshchuk, S. G. & Hodovychenko, M. A. “Distributed deep learning framework

for smart building transducer network“. Applied Aspects of Information Technology. 2021: Vol. 4 No. 2:

127–139, https://www.scopus.com/authid/detail.uri?authorId=57192379296. DOI: https://doi.org/10.15276/

aait.02.2021.1.

3. Gupta, A., Gupta, H., Biswas, H. & Dutta, T. “An unseen fault classification approach for smart ap-

pliances using ongoing multivariate time series”. IEEE Transactions on Industrial Informatics. 2020; Vol. 17

No. 6: 3731–3738. DOI: https://doi.org/10.1109/TII.2020.3016590.

4. Antoshchuk, S. G., Lobachev, I. M. & Maleryk, R. P. “Method of the Sensor Network Re-

sources Allocation in the Conditions of Edge Computing”. Herald of Advanced Information Technol-

ogy. 2018; Vol. 1 No.1:28–35, https://www.scopus.com/authid/detail.uri?authorId=8393582500.

DOI: https://doi.org/10.15276/ hait.01.2018.3.

5. Tu, Y. & Lin, Y. “Deep neural network compression technique towards efficient digital signal modu-

lation recognition in edge device”. IEEE Access. 2019; Vol. 7: 58113–58119,

https://www.scopus.com/authid/detail.uri?authorId=57201253730. DOI: https://doi.org/10.1109/ACCESS.

2019.2913945.

6. Saraswat, S., Gupta, A., Gupta, H. & Dutta T. “An incremental learning-based gesture recognition

system for consumer devices using edge-fog computing”. IEEE Transactions on Consumer Electronics.

2020; Vol.66 No.1: 51–60, https://www.scopus.com/authid/detail.uri?authorId=57201912456.

DOI: https://doi.org/10.1109/TCE.2019.2961066,

7. Akmandor, A., Yin, H. & Jha N. “Smart, secure, yet energy-efficient, internet-of-things sensors”.

IEEE Transactions on Multi-Scale Computing Systems. 2018; Vol. 4 No. 4: 914–930,

https://www.scopus.com/authid/detail.uri?authorId=57200168624. DOI: https://doi.org/10.1109/TMSCS.

2018.2864297.
8. Palit, I., Lou, Q., Perricone, R., Niemier, M. & Hu, X. “A uniform modeling methodology for

benchmarking DNN accelerators”. IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). 2019. 1–7, https://www.scopus.com/authid/detail.uri?authorId=35318523500. DOI:

https://doi.org/10.1109/ ICCAD45719.2019.8942095.

9. Marco, V., Taylor, B., Wang, Z. & Elkhatib, Y. “Optimizing deep learning inference on embedded

systems through adaptive model selection”. ACM Transactions on Embedded Computing Systems. 2020;

Vol.19 No.1: 1–28, https://www.scopus.com/authid/detail.uri?authorId=57195337351.

DOI: https://doi.org/10.1145/3371154.

10. Xiang, Y. & Kim, H. “Pipelined data-parallel cpu/gpu scheduling for multi-dnn real-time inference”.

IEEE Real-Time Systems Symposium (RTSS). 2019. p. 392–405,

https://www.scopus.com/authid/detail.uri?authorId=57211500577. DOI: https://doi.org/10.1109/

RTSS46320.2019.00042.

11. Yang, T., Chen, Y., Emer, J. & Sze, V. “A method to estimate the energy consumption of deep neu-

ral networks”. 51st Asilomar Conference on Signals, Systems, and Computers. 2017. p.1916–1920,

https://www.scopus.com/authid/detail.uri?authorId=57200278848. DOI: https://doi.org/10.1109/ACSSC.

2017.8335698.

12. Wu, Y., Emer, J. & Sze, V. “Accelergy: An architecture-level energy estimation methodology for

accelerator designs”. IEEE/ACM International Conference on Computer-Aided Design (ICCAD). 2019.

125–138, https://www.scopus.com/authid/detail.uri?authorId=57213421811. DOI: https://doi.org/10.1109/

ICCAD45719.2019.8942149.

13. Blalock, D., Ortiz, J., Frankle, J. & Guttag, J. “What is the state of neural network pruning?” –

Available from: https://arxiv.org/abs/ 2003.03033. – [Accessed March 2021],

https://www.scopus.com/authid/detail.uri?authorId=56764124300.

14. He, Y., Zhang, X. & Sun, J. “Channel pruning for accelerating very deep neural networks”. –

Available from: https://arxiv.org/abs/ 1707.06168. – [Accessed March 2021],

https://www.scopus.com/authid/detail.uri?authorId=56333360900.

https://doi.org/
https://doi.org/10.1109/ICCAD45719.2019.8942095

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 241

15. Liu, C. & Liu, Q. “Improvement of pruning method for convolution neural network compres-

sion”. ICDLT '18: Proceedings of the 2018 2nd International Conference on Deep Learning Technolo-

gies. 2018. p. 57–60, https://www.scopus.com/authid/detail.uri?authorId=57204393134.

DOI: https://doi.org/10.1145/3234804.3234824.

16. Howard, A., Zhu, M., Chen B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. & Adam,

H. “Mobilenets: Efficient convolutional neural networks for mobile vision applications”. –Available from:

https://arxiv.org/abs/ 1704.04861. – [Accessed March 2021], https://www.scopus.com/authid/

detail.uri?authorId=57191429941.

17. Molchanov, P., Mallya, A., Tyree, S., Frosio, I. & Kautz, J. “Importance estimation for neural

network pruning”. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) .

2019. p. 11264–11272, https://www.scopus.com/authid/detail.uri?authorId=57191194479.

DOI: https://doi.org/10.1109/CVPR.2019.01152.

18. Bhattacharya, S. & Lane, N. “Sparsification and separation of deep learning layers for con-

strained resource inference on wearables”. SenSys '16: Proceedings of the 14th ACM Conference on

Embedded Network Sensor Systems CD-ROM. 2016. p. 176–189,

https://www.scopus.com/authid/detail.uri?authorId=23135333200. DOI: https://doi.org/10.1145/2994551.2994564.

19. Huynh, L., Lee, Y. & Balan, R. “Deepmon: Mobile gpu-based deep learning framework for continuous

vision applications”. MobiSys '17: Proceedings of the 15th Annual International Conference on Mobile Systems,

Applications and Services. 2017. p. 82–95, https://www.scopus.com/authid/detail.uri?authorId=54972593600.

DOI: https://doi.org/10.1145/3081333.3081360.

20. Denton, E., Zaremba, W., Bruna, J., LeCun, Y. & Fergus, R. “Exploiting linear structure within

convolutional networks for efficient evaluation”. – Available from: https://arxiv.org/abs/1404.0736. – [Ac-

cessed March 2021], https://scopus.com/authid/detail.uri?authorId=55338354300.

21. Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz, M., & Dally, W. “Eie: efficient infer-

ence engine on compressed deep neural network”. ACM SIGARCH Computer Architecture News. 2016;

Vol. 44 No. 3: 243–254, https://www.scopus.com/authid/detail.uri?authorId=57188982996.

DOI: https://doi.org/10.1145/3007787.3001163.

22. Louizos, C., Ullrich, K. & Welling, M. “Bayesian compression for deep learning”. – Available

from: https://arxiv.org/abs/1705.08665. – [Accessed March 2021], https://www.scopus.com/authid/

detail.uri?authorId=56159413400.

23. He X., Zhou, Z. & Thiele, L. “Multi-task zipping via layer-wise neuron sharing”. – Available from:

https://arxiv.org/abs/1805.09791. – [Accessed March 2021], https://www.scopus.com/authid/

detail.uri?authorId=57203161263.

24. Tan, M., Chen, B., Pang, R., Vasudevan, V., Sandler, M., Howard, A., & Le, Q. “Mnasnet: Plat-

form-aware neural architecture search for mobile”. – Available from: https://arxiv.org/abs/1807.11626. –

[Accessed March 2021], https://www.scopus.com/authid/detail.uri?authorId=57213829311.

25. Chauhan, J., Rajasegaran, J., Seneviratne, S., Misra, A., Seneviratne, A. & Lee, Y. “Perfor-

mance characterization of deep learning models for breathing-based authentication on resource-

constrained devices”. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-

nologies. 2018; Vol. 2 No. 4: 1–28, https://www.scopus.com/authid/detail.uri?authorId=57202425975.

DOI: https://doi.org/10.1145/3287036.

26. Han, S., Mao H. & Dally W. “Deep compression: Compressing deep neural networks with pruning,

trained quantization and Huffman coding”. – Available from: https://arxiv.org/abs/1510.00149. – [Accessed

March 2021], https://www.scopus.com/authid/detail.uri?authorId=57188982996.

27. Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. & Kalenichenko, D.

“Quantization and training of neural networks for efficient integer-arithmetic-only inference”. – Available

from: https://arxiv.org/abs/1712.05877. – [Accessed March 2021], https://www.scopus.com/authid/

detail.uri?authorId=6504282916.

28. Zhang, J., Ye, B., & Luo, X. “Mbfn: A multi-branch face network for facial analysis”, ACAI 2019:

Proceedings of the 2019 2nd International Conference on Algorithms, Computing and Artificial Intelligence.

2019. p.542–549. DOI: https://doi.org/10.1145/3377713.3377719, https://www.scopus.com/authid/

detail.uri?authorId=57192154642.

https://arxiv.org/abs/1404.0736
https://arxiv.org/abs/1705.08665
https://arxiv.org/abs/1805.09791
https://arxiv.org/abs/1712.05877

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

242 ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

29. Georgiev, P., Bhattacharya, S., Lane N. & Mascolo, C. “Lowresource multi-task audio sensing for

mobile and embedded devices via shared deep neural network representations”. Proceedings of the ACM on

Interactive, Mobile, Wearable and Ubiquitous Technologies. 2017: Vol. 1 No. 3: 1–19,

https://www.scopus.com/authid/detail.uri?authorId=56411711300. DOI: https://doi.org/10.1145/3131895,

30. Lee, S. & Nirjon, S. “Neuro. zero: a zero-energy neural network accelerator for embedded sensing

and inference systems”. SenSys '19: Proceedings of the 17th Conference on Embedded Networked Sensor

Systems. 2019. p.138–152, https://www.scopus.com/authid/detail.uri?authorId=57204766313.

DOI: https://doi.org/10.1145/3356250.3360030.

31. Yang, K., Xing, T., Liu, Y., Li, Z., Gong, X., Chen, X. & Fang, D. “cDeepArch: A compact deep

neural network architecture for mobile sensing”. 15th Annual IEEE International Conference on Sensing,

Communication, and Networking (SECON). 2019; Vol. 27 No. 5: 2043–2055,

https://www.scopus.com/authid/detail.uri?authorId=7409380308. DOI: https://doi.org/10.1109/SAHCN.

2018.8397117.

32. Hubara, I., Courbariaux, M., Soudry, D., El-Yaniv, R. & Bengio, Y. “Quantized neural networks:

Training neural networks with low precision weights and activations”. – Available from:

https://arxiv.org/abs/1609.07061. – [Accessed March 2021], https://www.scopus.com/authid/detail.uri?

authorId=56737272100.

33. Yun, S., Park, J., Lee, K. & Shin, J. “Regularizing class-wise predictions via self-knowledge distilla-

tion”. IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2020. p.13876–13885,

https://www.scopus.com/authid/detail.uri?authorId=57214146085. DOI: https://doi.org/10.1109/cvpr42600.

2020.01389.

34. Mirzadeh, S., Farajtabar, M., Li, A., Levine, N., Matsukawa, A. & Ghasemzadeh, H. “Improved

knowledge distillation via teacher assistant”. – Available from: https://arxiv.org/abs/1902.03393. – [Ac-

cessed March 2021], https://scopus.com/authid/detail.uri?authorId=57215120808.

35. Yang, J., Zou, H., Cao, S., Chen, Z. & Xie, L. “MobileDA: Towards edge domain adaptation”, IEEE

Internet of Things Journal. 2020; Vol. 7 No. 8: 6909–6918,

https://www.scopus.com/authid/detail.uri?authorId=57195741598. DOI: https://doi.org/10.1109/JIOT.

2020.2976762.

36. Radu, V., Lane, N., Bhattacharya, S., Mascolo, C., Marina, M. & Kawsar, F. “Towards multimodal deep

learning for activity recognition on mobile devices”. UbiComp '16: Proceedings of the 2016 ACM International

Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. 2016. p. 185–188,

https://www.scopus.com/authid/detail.uri?authorId=56045234400. DOI: https://doi.org/10.1145/2968219.2971461.

37. Mathur, A., Lane, N., Bhattacharya, S., Boran, A., Forlivesi, C. & Kawsar F. “Deepeye: Re-

source efficient local execution of multiple deep vision models using wearable commodity hardware” .

MobiSys '17: Proceedings of the 15th Annual International Conference on Mobile Systems, Applica-

tions, and Services. 2017. p. 68–81, https://www.scopus.com/authid/detail.uri?authorId=23135333200.

DOI: https://doi.org/10.1145/3081333.3081359.

38. Svyatkovskiy, A., Kates-Harbeck, J. & Tang, W. “Training distributed deep recurrent neural net-

works with mixed precision on gpu clusters”. – Available from: https://arxiv.org/abs/1912.00286. – [Ac-

cessed March 2021], https://www.scopus.com/authid/detail.uri?authorId=36640625700.

39. Guo, Y., Yao, A. & Chen, Y. “Dynamic network surgery for efficient dnns”. – Available from:

https://arxiv.org/abs/1608.04493. – [Accessed March 2021], https://www.scopus.com/authid/detail.uri?

authorId=57194152792.

40. Bhattacharya S. & Lane N. “Sparsification and separation of deep learning layers for constrained re-

source inference on wearables”. SenSys '16: Proceedings of the 14th ACM Conference on Embedded Network

Sensor Systems CD-ROM. 2016. p. 176–189, https://www.scopus.com/authid/detail.uri?authorId=23135333200.

DOI: https://doi.org/10.1145/2994551.2994564.

Conflicts of Interest: the authors declare no conflict of interest

Received 22.12.2020

Received after revision 27.02.2021

Accepted 14.03.2021

https://arxiv.org/abs/1609.07061
https://arxiv.org/abs/1912.00286
https://arxiv.org/abs/1608.04493

Herald of Advanced Information Technology 2021; Vol.4 No.3: 232243

ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

 243

DOI: https://doi.org/10.15276/hait.03.2021.3

УДК 004.93.1

Методологія компресії нейронних мереж для моделей многосенсорних

трансдюсерних мереж на основі периферійних обчислень

Іван Михайлович Лобачев1)

ORCID: https://orcid.org/0000-0002-4859-304X; lobachev.i.m@gmail.com. Scopus ID: 57192559239

Світлана Григорівна Антощук1)
ORCID: https://orcid.org/0000-0002-9346-145X; asg@opu.ua. Scopus ID: 8393582500

Микола Анатолійович Годовиченко1)

ORCID: https://orcid.org/0000-0001-5422-3048; nick.godov@gmail.com. Scopus ID: 57188700773
1) Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044, Україна

АНОТАЦІЯ

У цій статті основна увага приділяється розробці методу компресії нейронних мереж, який заснований на механізмі

виключення нейронів прихованих шарів. Вищезазначені нейронні мережі створюються для обробки даних, що генеруються

численними сенсорами, присутніми в трансдюсерних мережах, які використовуються в області створення розумних будин-

ків. Запропонований метод реалізує єдиний підхід до компресії як згорткових нейронних мереж, так і рекурентних нейрон-

них мереж, які використовуються для задач класифікації і регресії. Основний принцип цього методу заснований на механіз-

мі виключення, який використовується в якості механізму регуляризації нейронних мереж. Ідея запропонованого методу

полягає у виборі оптимальної ймовірності виключення нейрона прихованого шару на основі параметра надмірності. Новиз-

на цього методу полягає у використанні спеціальної мережі-оптимізатора, яка представляє собою рекурентну нейронну ме-

режу, що дозволяє обчислювати параметр надмірності не тільки на одному прихованому шарі, але і на кількох шарах. Дода-

тковий аспект новизни полягає в ітеративній оптимізації мережі-оптимізатора для постійного поліпшення обчислення пара-

метрів надмірності вхідної нейронної мережі. Для експериментальної оцінки запропонованого методу була обрана задача

розпізнавання зображень камерою низького розширення, для емуляції сценарію використовувався набір даних CIFAR10. В

якості експериментальної нейронної мережі була обрана згорткова нейронна мережа VGGNet, яка містить згорткові і повно-

зв'язні шари. В якості методів-аналогів був узятий метод MagBase, який заснований на принципі спарцифікаціі, а також

метод, заснований на розрідженому представленні з використанням підходу розрідженого кодування SFAC. Результати екс-

перименту показали, що кількість параметрів в скомпресованій моделі складає всього 2,38 % від оригінальної моделі. Це

дозволило скоротити час логічного висновку на 93,7 % і споживання енергії на 94,8 %. Запропонований метод дозволяє

ефективно використовувати глибокі нейронні мережі в трансдюсерних мережах, що використовують архітектуру перифе-

рійних обчислень. Це, в свою чергу, дозволяє системі обробляти дані в реальному часі, скоротити споживання енергії і час

логічного висновку, а також зменшити вимоги до пам'яті та сховища для реальних додатків.

Ключові слова: Розумна будівля; інтернет речей; компресія нейронних мереж; проріджування мережі; розріджене

представлення нейронної мережі; рекурентна нейронна мережа; короткочасна довгострокова пам'ять

ABOUT THE AUTHORS

Ivan M. Lobachev, PhD Student of Information Systems Department. Odessa National Polytechnic University,
1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0002-4859-304X; lobachev.i.m@gmail.com. Scopus ID: 57192379296
Research field: Deep learning; wireless sensor networks; smart cities; embedded systems; quantum computing; data

mining

Іван Михайлович Лобачев, аспірант кафедри Інформаційних систем. Одеський національний політехнічний
університет, пр. Шевченка, 1. Одеса, 65044,Україна

Svitlana G. Antoshchuk, Dr. Sci. (Eng), Professor, Head of Computer Systems Institute. Odessa National

Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine
ORCID: https://orcid.org/0000-0002-9346-145X; asg@opu.ua. Scopus ID: 8393582500

Research field: Pattern recognition; deep learning; object tracking; face recognition; graphic images formation and

processing

Світлана Григорівна Антощук, доктор технічних наук, професор, директор інституту Комп’ютерних си-

стем. Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044,Україна

Mykola A. Hodovychenko, Ph.D, Associate Prof. of the Department of Project-based Learning in IT. Odessa
National Polytechnic University, 1, Shevchenko Ave. Odessa, 65044, Ukraine

ORCID: https://orcid.org/0000-0001-5422-3048; nick.godov@gmail.com. Scopus ID: 57188700773
Research field: Deep learning; data mining; smart cities; video processing; motion tracking; project-based

Learning; patter recognition

Микола Анатолійович Годовиченко, кандидат технічних наук, доцент кафедри Проектного навчання в IT.
Одеський національний політехнічний університет, пр. Шевченка, 1. Одеса, 65044,Україна

https://doi.org/
mailto:asg@opu.ua
mailto:nick.godov@gmail.com

