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ABSTRACT 

 
This paper focuses on the development of a methodology to compress neural networks that is based on the mechanism of prun-

ing the hidden layer neurons. The aforementioned neural networks are created in order to process the data generated by numerous 

sensors present in a transducer network that would be employed in a smart building. The proposed methodology implements a single 

approach for the compression of both Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) that are used 

for the tasks of classification and regression. The main principle behind this method is based on the dropout mechanism, which is 

employed as a regulation mechanism for the neural networks. The idea behind the method proposed consists of selecting optimal 

exclusion probability of a hidden layer neuron, based on the redundancy of the said neuron. The novelty of this method is the usage 

of a custom compression network that is based on an RNN, which allows us to determine the redundancy parameter not just in a sin-

gle hidden layer, but across several layers. The additional novelty aspect consists of an iterative optimization of the network-

optimizer, to have continuous improvement of the redundancy parameter calculator of the input network. For the experimental evalu-

ation of the proposed methodology, the task of image recognition with a low-resolution camera was chosen, the CIFAR10 dataset 

was used to emulate the scenario. The VGGNet Convolutional Neural Network, that contains convolutional and fully connected lay-

ers, was used as the network under test for the purposes of this experiment. The following two methods were taken as the analogous 

state of the art, the MagBase method, which is based on the sparcification principle as well as the method which is based on rarefied 

representation by employing the approach of rarefied encoding SFAC. The results of the experiment demonstrated that the amount of 

parameters in the compressed model is only 2.56 % of the original input model. This has allowed us to reduce the logical output time 

by 93.7 % and energy consumption by 94.8 %. The proposed method allows to effectively using deep neural networks in transducer 

networks that utilize the architecture of edge computing. This in turn allows the system to process the data in real time, reduce the 

energy consumption and logical output time as well as lower the memory and storage requirements of real-world applications.  
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INTRODUCTION, FORMULATION OF THE 

PROBLEM 

In recent years we have seen a wide application 

of machine learning principles, especially in Internet 

of Things (IoT) systems, this is explained in part by 

the availability of small, inexpensive computational 

devices [1]. 

Approaches that are based on traditional meth-

ods of machine learning, require manual attribute 

selection, this lowers their ability to generalize on 

new data sets that do not contain information about 

the distribution of the data [2]. As a result, the im-

plementations based on deep neural networks be-

came the dominating type in many areas, including 

smart buildings, agriculture, motion and gesture 
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recognition etc. [3, 4]. The main reason behind this 

is that neural networks allow to automatically select 

attributes from a large volume or raw data.  

This allows the system to exclude the human 

factor and obtain a high degree of solution efficiency 

in the neural network. 

Among the most popular types of neural net-

works, one could highlight Convolutional Neural 

Networks (CNN), Fully Connected Neural Networks 

(FC), and Recurrent Neural Networks (RNN). Mod-

els based on neural networks can include one or 

more types of neural networks in varying combina-

tions. Convolutional neural networks extract spatial 

attributes, while recurrent neural networks are 

geared more towards time attribute extraction from 

the data set. The usage of these attributes is the key 

to the high efficiency of neural networks when deal-
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ing with tasks such as classification, regression and 

forecasting [5, 6].  

Despite these advantages, the usage of models 

based on machine learning requires a large pool of 

resources, including energy, processing capability 

and data storage.  

These requirements lower the feasibility of em-

ployment of neural networks in devices with limited 

resources [7]. 

Usually, extensive resource requirements be-

come the bottleneck when developing IoT solutions, 

where the output of the neural network is needed in 

real-time. 

One of the methodologies to decrease resource 

demand of neural networks is the compression of 

neural networks.  

Compressed neural networks possess several 

advantages when compared to traditional neural 

networks: 

 computational power demand: a vast number 

of floating-point operations (FLOPs) involved in the 

operation of DNN (Deep Neural Network) can ex-

ceed the limited processing capacity of the IoT 

nodes [11, 12], [13, 14].  

Therefore, it would be useful to use DNN com-

pression to reduce processing power requirements 

[15]: 

 time consumption: the training and working 

time of a DNN model is significantly long, which 

makes it difficult to perform model inference in real 

time [16, 17]. DNN compression techniques thus 

provide a higher degree of quickness in both training 

and inference tasks; 

 memory capacity: neural networks achieve a 

high performance when using large number of neu-

rons, which in turn requires large memory consump-

tion to hold and process the model [8, 9], [10]. As a 

result, compression could lower the memory re-

quirements. This simplifies and makes it more eco-

nomical to deploy compressed neural networks on 

devices with limited memory resources; 

 power consumption: compression of neural 

network also lowers the energy consumption for data 

processing [19, 20], [21]. This improves the ease of 

deploying the compressed neural network models on 

battery-power IoT devices; 

 privacy: the transfer of data from an edge 

node to the cloud leads to high probability of securi-

ty breaches and confidentiality compromises [18]. 

Therefore, it would be beneficial to process data 

with neural networks in-place, which helps maintain 

confidentiality and ensures data security. 

A feature of IoT systems that are used in the 

field of creating smart buildings is the use of a varie-

ty of sensors of various types, with different dimen-

sions of data as well as update frequency for new 

data, which consider the spatial and temporal char-

acteristics of their environment. 

Thus, the purpose of this study is to develop a 

compression method that would provide a unified 

approach to the compression of various types of neu-

ral networks to process multisensory data in the de-

velopment of smart buildings. 

1. LITERATURE REVIEW 

Compression techniques of deep neural net-

works can be broken down into five types, depend-

ing on the approach to the compression process 

used: network pruning, sparse representation, data 

precision, knowledge distillation, and other ap-

proaches. Table 1 lists the main categories and sub-

categories of compression techniques. 

Network pruning.  This compression approach 

is implemented by removing individual components 

of neural network: filters, channels, layers of indi-

vidual neurons in order to get compressed model. 

Compressed model uses less memory, con-

sumes less energy and allows to get inference faster 

than uncompressed model with the same accuracy or 

with acceptable loss of accuracy. 

To measure the importance and contribution of 

neural network component to the final network per-

formance, we could compare network accuracy 

when component is removed from the model [17]. 

Pruning is applied step by step to the neural network 

to exclude only components that will not or mini-

mally decrease network performance. 

Pruning techniques can be further divided into 

four subcategories, based on components to be 

pruned: channel pruning, filter pruning, layer prun-

ing and connection pruning. 

Pruning methods could minimize the amount of 

used storage and requirements for the computing 

power of the node on which the compressed neural 

network is deployed. 

Sparse representation. Sparse representation 

uses the sparsity which is present in the weight ma-

trices of the neural network model. In sparse repre-

sentation techniques, the weights there are zero or 

close to zero are excluded from the matrix, which 

lowers the power and computational power require-

ments of the compressed model. Connections in the 

network with similar weights are multiplexed, where 

in-place of multiple weights with a single connection 

is replaced with a single weight with the multiplex 

connection.  

Sparse representation techniques could be di-

vided into quantization, multiplexing, and weight 

sharing. The main idea behind the sparse representa-

tion methods is to reduce the weight matrix without 

losing the performance of the DNN model.  
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Data precision. Data precision techniques re-

duces the number of bits required for storing the 

weights in the weight matrices 𝑊. For example, the 

FLOPs in the default DNN model requires 32 bits, 

which can be replaced with integer datatype, that 

requires only 8 bits. Similarly, we can use binary, 6 

bits, 16 bits for replacing 32 bits FLOPs in the DNN 

model. We categorized the existing literature on 

DNN compression using bits precision into three 

sub-categories, namely, estimation using integer, 

low bits representation, and binarization. 

 

Table 1. Overview of compression techniques  

categories 

Compression 

techniques 
Subcategories 

Network 

pruning 
Channel pruning [13,14], [15,16] 
Filter pruning [17,18], [19,20] 
Connection pruning [21,22], [23] 
Layer pruning [24,25] 

Sparse repre-

sentation 
Quantization [26], [27] 
Multiplexing [28] 
Weight sharing [29] 

Data preci-

sion 
Estimation using integer [30] 
Binarization [31] 
Low bit representation [32] 

Knowledge 

distillation 
Logits transfer [33] 
Teacher assistant [34] 
Domain adaptation [35] 

Other methods    [36,37], [38] 
Source: compiled by the authors 

Knowledge distillation. In a DNN model, the 

term knowledge distillation is defined as the process 

of transferring the generalization ability of the com-

plex model (teacher) to the compact model (student) 

to improve its performance. Knowledge distillation 

provides a mechanism to overcome the accuracy 

tradeoff due to the DNN compression. The training 

of the student model using knowledge distillation 

improves its generalizability so that it can mimic 

teacher-like behavior to predict the probabilities of a 

class label.  

We could further divide knowledge distillation 

techniques into logit transfer techniques, teacher-

assistant techniques, and domain adaptation meth-

ods. 

Other methods. DNN compression methods 

that do not fit into any of the above four categories 

are classified as other. These include DNN compres-

sion techniques that perform DNN modeling in such 

a way that they can be easily deployed on mobile 

devices. Typically, these methods consist of allocat-

ing tasks to reduce memory usage or leverage paral-

lel processing mechanisms. 

Analysis of neural network compression meth-

ods has shown the relevance of developing a method 

that provides a unified approach to the compression 

of machine learning models that use a combination 

of different types of neural networks to process mul-

tisensory data in the field of smart building systems. 

2. COMPRESSION METHOD DESIGN 

The proposed method is based on the use of the 

well-known deep neural network regularization 

method known as "dropout" or exclusion. The drop-

out operation assigns to each neuron of the network 

of hidden layers the probability of its exclusion. 

During the screening process, elements of hidden 

layers can be excluded based on a probability pa-

rameter, resulting in a network structure with fewer 

elements. The main parameter of this operation is 

the probability of exclusion, which must be selected 

in such a way as to form an optimal network struc-

ture that preserves the accuracy of work and mini-

mizes resource consumption. The proposed method 

is aimed at finding the optimal exclusion probability 

for each element of the hidden layer. 

To obtain the parameter of the optimal proba-

bility of exclusion in the proposed method, the net-

work parameters themselves are used. For this, the 

parameter of redundancy of the node of the hidden 

layer of the neural network is introduced. From the 

point of view of the compression process of the 

model, the element with higher redundancy has a 

higher probability of being excluded. 

A new idea within this method is the usage of a 

special neural network, which plays the role of an 

optimizer (network-optimizer), which takes as input 

the weights of each layer of the original network, 

finds the redundancy value, and estimates the proba-

bility of dropout for each neuron of the hidden layer. 

Within the compression process, the original 

neural network and network-optimizer are enhanced 

iteratively to reduce the value of loss function. 

The proposed technique could be described as a 

sequence of steps: 

1) dropout operations are added to the hidden 

layers of the source neural network, which randomly 

eliminate nodes with probability 𝑝(𝑙). The input and 

output layers of the neural network has a fixed size 

and do not affect by compression method; 

2) initialization of network-optimizer. Each 

layer intended for compression represented as the 

weight matrix 𝑊(𝑙), from which the network-

optimizer receives the values of the redundancy pa-

rameter, after which the optimal probabilities of 

dropout each element of the hidden layer 𝑝(𝑙), which 

are then used in the dropout operation in the original 

neural network; 

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
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3) an iterative process of enhancing of the net-

work-optimizer and the source network conducted. 

The network-optimizer is enhanced to get more ac-

curate dropout probabilities, which will produce a 

more accurate compressed structure of the original 

neural network. The original neural network is en-

hanced to achieve a more efficient structure. 

2.1. Dropout routine 

The basic idea is that we regard neural networks 

with dropout operations as Bayesian neural networks 

with Bernoulli variational distributions. 

For the full connected layers, the dropout opera-

tion can be described as 

 𝑧[𝑗]
(𝑙)
~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙)
), 

�̃�
(𝑙)
= 𝑊(𝑙)𝑑𝑖𝑎𝑔(𝑧(𝑙)), 

𝑌(𝑙) = 𝑋(𝑙)�̃�(𝑙) + 𝑏(𝑙), 

𝑋(𝑙+1) = 𝑓(𝑌(𝑙)), 

(1) 

where: 𝑙 = 1,… , 𝐿 – is the layer number in the net-

work; 𝑊(𝑙) ∈ 𝑅𝑑
(𝑙−1)×𝑑(𝑙) – weight matrix for each 

layer 𝑙; 𝑏(𝑙) ∈ 𝑅𝑑
(𝑙)

 – bias vector; 𝑋(𝑙) ∈ 𝑅1×𝑑
(𝑙−1)

 – 

the input; 𝑓(∙) – activation function. 

As shown in (1), each hidden unit is controlled 

by a Bernoulli variable. In the default dropout meth-

od, the success probabilities of 𝑝[𝑗]
(𝑙)

 usually is as-

signed to the same constant 𝑝 for all neurons of hid-

den layers. Proposed method estimated individual 

probabilities for each neuron to compress the neural 

network structure. 

In convolutional neural networks, default opera-

tion is convolution. Convolution can be represented 

as a linear operation as shown in (1).  

For some layer 𝑙, we define 𝐾(𝑙) = {𝐾𝑘
(𝑙)
} for 

𝑘 = 1,… , 𝑐(𝑙) as the convolutional neural network  

kernels, where 𝐾𝑘
(𝑙) ∈ 𝑅ℎ

(𝑙)×𝜔(𝑙)×𝑐(𝑙−1) is the kernel 

of network with height ℎ(𝑙), width 𝜔(𝑙) and channel 

𝑐(𝑙−1). The input matrix of layer 𝑙 defines as �̂�
(𝑙)
∈

𝑅ℎ̂
(𝑙−1)

×�̂�
(𝑙−1)

×𝑐(𝑙−1)with height ℎ̂
(𝑙−1)

, width �̂�(𝑙−1) 
and channel 𝑐(𝑙−1). 

From the input �̂�(𝑙) we get dimensional section 

ℎ(𝑙) × 𝜔(𝑙) × 𝑐(𝑙−1) with stride 𝑠, and turn these sec-

tions into vectors. These vectors are the rows of in-

put representation 𝑋(𝑙) ∈ 𝑅𝑛×(ℎ
(𝑙)𝜔(𝑙)𝑐(𝑙−1)), where 𝑛 

– number of vectors. The vectorized kernels form 

the columns of the weight matrix 𝑊(𝑙) ∈

𝑅(ℎ
(𝑙)𝜔(𝑙)𝑐(𝑙−1))×𝑐(𝑙). 

With this transformation, dropout operations 

can be applied to convolutional neural networks ac-

cording to (1). The composition of pooling and acti-

vation functions can be regarded as the nonlinear 

function 𝑓(∙) in (1). 

In convolution neural network we exclude ker-

nels instead of distinct neurons. Therefore, proposed 

technique manages to prune kernels from the convo-

lutional network. 

For the recurrent neural network, we take a 

multi-layer LSTM network as an example. The 

LSTM dropout operation can be described as 

 𝑧[𝑗]
(𝑙)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙)), 

(

𝑖
𝑓
𝑜
𝑔
) =

(
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑡𝑎𝑛ℎ

)𝑊(𝑙) (
ℎ𝑡
(𝑙−1)

⊙𝑧(𝑙−1)

ℎ𝑡−1
(𝑙)
⊙𝑧(𝑙)

), 

𝑐𝑡
(𝑙)
= 𝑓 ⊙ 𝑐𝑡−1

(𝑙)
+ 𝑖 ⊙ 𝑔, 

ℎ𝑡
(𝑙) = 𝑜 ⊙𝑡𝑎𝑛ℎ tanh (𝑐𝑡

(𝑙)), 

(2) 

where: 𝑙 = 1,… , 𝐿 – is the layer number and 𝑡 =
1,… ; 𝑇 – is the step in the recurrent neural network; 

Element-wise multiplication is denoted by ⊙; oper-

ators 𝑠𝑖𝑔𝑚 и 𝑡𝑎𝑛ℎ defines sigmoid function and 

hyperbolic tangent respectively; the vector ℎ𝑡
(𝑙) ∈

𝑅𝑛
(𝑙)

 is the output of step 𝑡 at layer 𝑙; the vector 

ℎ𝑡
(0)
= 𝑥𝑡 is the input for the whole network at step 

𝑡; the matrix 𝑊(𝑙) ∈ 𝑅4𝑛
(𝑙)×(𝑛(𝑙−1)+𝑛(𝑙)) is the weight 

matrix at layer 𝑙. 
As shown in (2), proposed method uses vector 

of Bernoulli random variables 𝑧(𝑙) to estimate drop-

out among distinct time steps in each network layer, 

while individual Bernoulli variables are used for dif-

ferent steps in the LSTM dropout. Proposed method 

tries to reduce the number of hidden dimensions in 

the blocks of LSTM. In case of using GRUs, dropout 

routine can be carried out similarly. 

2.2. Design of network-optimizer 

A neuron in the hidden layer, which is connect-

ed to model parameter with high redundancy value, 

would have a higher chance to be excluded. 

Network-optimizer is designed in such way, 

that it takes the weights of neural network {𝑊(𝑙)} as 

inputs, estimates redundancy value in these weights 

and generates dropout probabilities {𝑝(𝑙)} for neu-

rons of hidden elements that can be used to com-

press network structure. 

A default approach is to train a distinct neural 

network for each layer of original neural network. 

Though, redundancy value is shared between differ-
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ent layers, the proposed technique obtains LSTM as 

the architecture for network-optimizer to learn re-

dundancy value among multiple layers. 

According to the (2), the weight in layer 𝑙 of the 

neural network can be represented as a single matrix 

𝑊(𝑙) ∈ 𝑅
𝑑𝑓
(𝑙)
×𝑑𝑑𝑟𝑜𝑝

(𝑙)

, where 𝑑𝑑𝑟𝑜𝑝
(𝑙)

 – defines the di-

mension that dropout operation is applied and 𝑑𝑓
(𝑙)

 

defines the dimension of features within each ex-

cluded element.  

The weight matrix of LSTM at layer 𝑙 can be repre-

sented as 𝑊(𝑙) ∈ 𝑅4∙(𝑛
𝑙−1)+𝑛𝑙)×𝑛(𝑙), where 𝑑𝑑𝑟𝑜𝑝

(𝑙) =

𝑛(𝑙) and 𝑑𝑓
(𝑙) = 4 ∙ (𝑛(𝑙−1) + 𝑛(𝑙)). Since we take 

weights from the original network layer by layer 

𝑊 = {𝑊(𝑙)}, with 𝑙 = 1,… , 𝐿 as the input of the 

network-optimizer. Instead of using a default LSTM 

as the architecture of optimizer, we apply a modified 

𝑙-step model described as 

 

(

 
 
 𝑣𝑖

𝑇

𝑣𝑓
𝑇

𝑣𝑜
𝑇

𝑣𝑔
𝑇
)

 
 
 
= 𝑊𝑐

(𝑙)𝑊(𝑙)𝑊𝑖
(𝑙),

(

 
 
𝑢𝑖
𝑢𝑓
𝑢𝑜
𝑢𝑔)

 
 

=𝑊ℎℎ𝑙−1,  

(
𝑖
𝑓
𝑜
𝑔

) = (
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑠𝑖𝑔𝑚
𝑡𝑎𝑛ℎ

)

(

 
 
(
𝑣𝑖
𝑣𝑓
𝑣𝑜
𝑣𝑔

)+ (
𝑢𝑖
𝑢𝑓
𝑢𝑜
𝑢𝑔

)

)

 
 

, 

𝑐𝑖 = 𝑓⊙ 𝑐𝑙−1 + 𝑖 ⊙ 𝑔, 

ℎ𝑙 = 𝑜⊙𝑡𝑎𝑛ℎ tanh(𝑐𝑙), 

𝑝(𝑙) = 𝑝𝑡 = 𝑠𝑖𝑔𝑚(𝑊𝑜
(𝑙)ℎ𝑖), 

𝑧[𝑗]
(𝑙)~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙)), 

(3) 

We define 𝑑𝑐 as the dimension of the LSTM 

hidden state. Then 𝑊(𝑙) ∈ 𝑅𝑑𝑓
(𝑙)
×𝑑𝑑𝑟𝑜𝑝

(𝑙)

, 𝑊𝑐
(𝑙) ∈

𝑅4×𝑑𝑓
(𝑙)

, 𝑊𝑖
(𝑙) ∈ 𝑅𝑑𝑑𝑟𝑜𝑝

(𝑙)
×𝑑𝑐, 𝑊ℎ ∈ 𝑅

4𝑑𝑐×𝑑𝑐 and 

𝑊𝑜
(𝑙) ∈ 𝑅𝑑𝑑𝑟𝑜𝑝

(𝑙)
×𝑑𝑐. The set of parameters of network-

optimizer is defined as 𝜙, where 𝜙 =

{𝑤𝑐
(𝑙)
, 𝑊𝑖

(𝑙)
, 𝑊ℎ, 𝑊𝑜

(𝑙)}. The matrix 𝑊(𝑙) is the input 

matrix for step 𝑙 in the network-optimizer, which is 

also the parameters of layer of the original network 

in (1) or (2). 

In comparison with the default LSTM version 

that requires vectors as inputs, the modified LSTM 

model keeps the structure of the original matrix and 

uses less parameters to obtain the redundancy among 

the dropout elements. 

Further, 𝑊𝑐
(𝑙)

 and 𝑊𝑖
(𝑙)

 transform original 

weight matrix 𝑊(𝑙) with different sizes into fixed 

size matrix. The vector 𝑧(𝑙) serves as template and 

probability 𝑝(𝑙) is the exclude probabilities for the 

layer in the network used in (1) and (2), which is 

also the dropout learnt through observing the redun-

dancy of the source network. 

2.3. Network compressing routine 

In formulas (1) and (2) custom dropout routines 

were described, which are used on the source net-

work that should be compressed and network-

optimizer used to get dropout probabilities. 

Here we will discuss the details of the com-

pressing routine. It enhances the source neural net-

work and the network-optimizer in a step-by-step 

manner and enables the network-optimizer to step-

wise compress the original neural network with soft 

deletion. 

We define the source neural network as 

𝐹𝑊(𝑥|𝑧) and we call it opponent. It gets 𝑥 as net-

work input and produces predictions based on drop-

out 𝑧 and parameters 𝑊, that refer to a weight 𝑊 =

{𝑊(𝑙)}. We assume that 𝐹𝑊(𝑥|𝑧) was trained be-

forehand. We define the network-optimizer by 

𝑧~𝜇𝜙(𝑊). It takes the weights of the opponent as 

inputs and generates the probability distribution of 

the mask vector 𝑧 based on its own parameters 𝜙. In 

order to enhance the optimizer to exclude hidden 

elements in the opponent, proposed technique fol-

lows the function 

 𝐿 = 𝐸𝑍~𝜇𝜙[𝐿(𝑦, 𝐹𝑤(𝑧))]

= ∑ 𝜇ф(𝑊)

𝑧~{0,1}|𝑧|

∙ 𝐿(𝑦, 𝐹𝑊(𝑥|𝑧)), 

(4) 

where 𝐿(∙,∙) is the function of the opponent. This 

function can be described as the expected loss of the 

network over the dropout generated by the optimiz-

er. 

Proposed technique enhances the optimizer and 

opponent in a stepwise way. It reduces loss function 

value as described in (4) by using the gradient de-

scent on optimizer and opponent step by step. Since 

dropout operations could be described as discrete 

sampling routines, we could not use backpropaga-

tion algorithm directly. 

As a result, we apply likelihood estimator to get 

the gradient value over 𝜙 
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 𝛻𝜙𝐿 =∑ 𝛻𝜙𝜇𝜙(𝑊) ∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))

𝑧

=∑ 𝜇
𝜙
(𝑊)𝛻𝜙 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜇𝜙(𝑊)

𝑧

∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))  

= 𝐸𝑧~𝜇𝜙 [𝛻𝜙 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜇𝜙(𝑊)

∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) ] ∑ 𝜇
ф
(𝑊)

𝑧~{0,1}|𝑧|

∙ 𝐿(𝑦, 𝐹𝑊(𝑥|𝑧)). 

(5) 

An estimator for (5) can be 

 ∇𝜙�̂� = ∇𝜙 log 𝜇𝜙(𝑊) ∙ 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)), 

 𝑧~𝜇𝜙. 
(6) 

The gradient over 𝑊(𝑙) ∈ 𝑊 is 

 𝛻𝑊(𝑙)𝐿 =∑ 𝜇
𝜙
(𝑊)

𝑧

∙ 𝛻
𝑊(𝑙)
𝐿(𝑦, 𝐹𝑤(𝑥|𝑧))

= 𝐸𝑧~𝜇𝜙[𝛻𝑊(𝑙)𝐿(𝑥|𝑧)]. 

(7) 

In similar way, an estimator for (7) can be 

 𝛻𝑊(𝑙)𝐿̂ = 𝛻𝑊(𝑙)𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)), 𝑧~𝜇𝜙. (8) 

Although the estimator (6) is an unbiased esti-

mator, it will produce higher variance. A higher var-

iance of the estimator can make the convergence 

slower. This means that variance reduction tech-

niques are typically required to make the optimiza-

tion feasible in practical tasks.  

First variance lowering approach is to subtract a 

𝑐 from signal 𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) in (5) which keeps the 

gradient. We are tracking the average of the signal 

𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) defined by 𝑐, and subtract 𝑐 from the 

gradient (6). 

Second variance lowering approach is to keep 

track of the average of the signal variance 𝑣, and 

divides the learning signal by (1, √𝜐) . 

Combing the aforementioned two variance low-

ering approaches, the final estimator (6) for gradient 

becomes 

 𝛻𝜙�̂�
= 𝛻𝜙 𝑙𝑜𝑔 𝑙𝑜𝑔 𝜇𝜙(𝑊)

∙
𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) − 𝑐

(1, √𝜐 ) 
 , 𝑧~𝜇𝜙. 

(9) 

where с and 𝜐 are the moving average of mean and 

the moving average of variance of signal 

𝐿(𝑦, 𝐹𝑤(𝑥|𝑧)) respectively. 

In comparison with other compressing tech-

niques that deleted weights without recovery capa-

bility, the proposed method used so-called “soft” 

deletion by iteratively lowering exclusion probabili-

ties of neurons with a factor 𝛾 ∈ (0, 1). During the 

experiments, the factor 𝛾 was 0.5.  

Proposed method could not make optimal drop-

out decision at the beginning, soft deletion technique 

provides possibility to recover excluded element. 

This approach reduces the risk network degradation. 

Within the compression routine, threshold of 

dropout, defined as 𝜏 increases from 0 with the step 

of ∇. The neurons of hidden layers with dropout, that 

is less than the threshold, will be given decay on 

probability, i.e., �̂�[𝑗]
(𝑙)
← 𝛾 ∙ 𝑝[𝑗]

(𝑙)
. 

In conclusion, the operation in optimizer (3) can 

be described as 

 
𝑧[𝑗]
(𝑙)
~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖 (𝑝[𝑗]

(𝑙) ∙ 𝛾
𝑙𝑝[𝑗]
(𝑙)
≤𝜏
) (10) 

where: 𝑙 – is the function; 𝛾 ∈ (0,1) is the factor 

and 𝜏 ∈ [0,1) – is the threshold. Since the operation 

of lowering dropout probability with the predefined 

factor 𝛾 is differentiable, we can still optimize the 

opponent and the network-optimizer through (8) and 

(9). 

The compression process will stop when the 

percentage of left number of parameters in 𝐹𝑊(𝑥|𝑧) 

is smaller than a user-defined value 𝛼 ∈ (0,1). 
Final step of compression is fine-tuning the re-

sulting network with a mask �̂�, which is decided by 

the value 𝜏. Mask generation (10) will be described as 

 
�̂�[𝑗]
(𝑙)
= 𝑙𝑝[𝑗]

(𝑙)
> 𝜏. (11) 

3. EXPERIMENTAL RESULTS 

For an experimental evaluation of the devel-

oped technique, we will test its work in relation to 

the compression of the convolutional neural network 

VGGNet in the problem of image recognition on the 

CIFAR10 dataset. 

The experiment was conducted on Intel Edison 

as a hardware platform. Intel Edison uses a Intel At-

om SoC with a 500 MHz frequency and has a 1GB 

of RAM and a 32Gb flash card. All experiments 

were carried out using only the power of the CPU. 

The training of neural networks took place on a 

desktop using a GeForce RTX 3060 video card. The 

compression process of the trained networks also 

took place on a desktop. All compressed neural net-

works worked using the Theano framework using 
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only the processor's power. Matrix multiplication 

operations were optimized with BLAS and Sparse 

BLAS algorithms. No additional optimization was 

conducted. 

For comparison with the proposed neural net-

work compression method, MagBase [39] and SFAC 

[40] algorithms were taken. 

MagBase is a magnitude-based network prun-

ing algorithm. The algorithm prunes weights in con-

volutional kernels and fully connected layer based 

on the magnitude. It retrains the network connec-

tions after each pruning step and can recover the 

pruned weights. For convolutional and fully con-

nected layers, MagBase searches the optimal thresh-

olds separately. 

SFAC is a sparse-coding and factorization-

based algorithm. The algorithm simplifies the fully 

connected layer by finding the optimal code-book 

and code based on a sparse coding technique. For 

the convolutional layer, the algorithm compresses 

the model with matrix factorization methods. We 

greedily search for the optimal code-book and fac-

torization  number  from the  bottom  to  the  top  

layer. 

The task is image recognition through a low-

resolution camera. During this experiment, we use 

CIFAR102 as our training and testing dataset. The 

CIFAR-10 dataset consists of 60000 32x32 color 

images in 10 classes, with 6000 images per class. 

There are 50000 training images and 10000 test im-

ages. It is a standard testing benchmark dataset for 

the image recognition tasks. While not necessarily 

representative of seeing objects in the wild, it offers 

a more controlled environment for a comparison. 

VGGNet was used as network-opponent. This 

architecture was chosen to illustrate that proposed 

approach could compress deep and large network 

structures. Network structure is shown in Table 2. 

Final compression structure for proposed meth-

od and analogues is also described in Table 2. Pro-

posed method carried out more efficient compres-

sion. Network-optimizer uses enhanced LSTM net-

work to learn redundancy values across network-

opponent layers. 

Alternative methods used redundancy infor-

mation only within distinct network layer. Proposed 

method uses global redundancy values among hid-

den layers to compress network in a more efficient 

manner. Also, there is a performance loss by net-

work, compressed by SFAC method. It’s safe to as-

sume that performance degradation is a result of ab-

sence of fine-tuning routine. 

The compromise between network accuracy 

and memory consumption is shown in Fig 1. We 

could see that proposed technique reaches a better 

performance with the usage of standard weight ma-

trix representation, while alternative methods use 

sparse representation. 

 
Fig. 1. Compromise between accuracy and 

memory consumption 

Source: compiled by the authors 

The compromise between accuracy and 

execution time is show in Fig. 2. Proposed approach 

achieves better performance in comparison with 

alternative methods. Compressed network takes 

83,4ms for inference with the same accuracy, which 

is 93,7 % quicker than original network. 

MagBase algorithm uses less execution time 

compared with SFAC in this experiment. Therefore, 

factorizing 2d kernel into two 1d kernels helps less 

in reducing computation time. SFAC fails to 

compress the original network into a small size 

while keeping the original performance, because 

SFAC avoids the fine-tuning. 

 
Fig. 2. Compromise between accuracy and  

    execution time 

                       Source: compiled by the authors 

The compromise between accuracy and power 

consumption is shown in Fig. 3. Proposed technique 

lowers power consumption by 94,8 % in comparison 

with the original network. It facilitates development 

of a long-lasting deep neural network models in 

nodes with energy deficit. 
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Table 2. Experimental results over VGGNet 

 VGGNet Proposed method MagBase SFAC 

Layers 
Neurons 

of hidden 

layers 

Parameters Neurons 

of hidden 

layers 

Percent of 

parameters 

left 

Percent of 

parameters 

left 

Percent of 

parame-

ters left 
Convolutional 1(3x3) 64 1600 26 42.5 % 53.5 % 93.6 % 

Convolutional 2(3x3) 64 35 600 41 31.8 % 40.3 % 57.7 % 

Convolutional 3(3x3) 128 72 700 55 30.7 % 52.7 % 85.7 % 

Convolutional 4(3x3) 128 145 600 64 22.4 % 67.2 % 56.2 % 

Convolutional 5(3x3) 256 292 700 101 21.2 % 71.7 % 85.5 % 

Convolutional 6(3x3) 256 584 300 94 15.3 % 65.1 % 56.2 % 

Convolutional 7(3x3) 256 584 300 85 13.1 % 61.8 % 56.3 % 

Convolutional 8(3x3) 512 1 173 500 118 8.2 % 36.8 % 85.7 % 

Convolutional 9(3x3) 512 2 356 200 92 4.2 % 10.3 % 56.2 % 

Convolutional 10(3x3) 512 2 353 700 61 2.1 % 3.7 % 56.8 % 

Convolutional 11(2x2) 512 1 045 100 125 3.2 % 3.2 % 84.7 % 

Convolutional 12(2x2) 512 1 045 100 117 5.4 % 1.6 % 84.5 % 

Convolutional 13(2x2) 512 1 045 100 142 6.3 % 2.2 % 84.1% 

Fully connected 1 4096 2 094 700 23 0.18 % 2.3 % 95.3 % 

Fully connected 2 4096 16 776 700 364 0.05 % 0.34 % 127 % 

Fully connected 3 10 40 500 10 9.2 % 18.2 % 90.6 % 

Total  29 647 400  2.56 % 7.07 % 108 % 

Accuracy 90.2 % 90.2 % 90.2 % 86.7 % 
Source: compiled by the authors

 
Fig. 3. Compromise between accuracy and  

power consumption 

Source: compiled by the authors 

CONCLUSIONS 

In this paper, a method for the compression of 

neural networks is proposed, which is based on the 

mechanism of pruning neurons of the hidden layers. 

Pruning is based on a modified dropout mechanism,  

in which, instead of selecting a single probability of 

excluding neurons, the optimal parameter of the ex-

clusion probability is selected for each neuron. To 

find the optimal probability of excluding each neu-

ron, the redundancy parameter of the hidden layer 

neuron is used, which is estimated using a special 

recurrent neural network, which makes it possible to 

consider the spatial connections between neurons on 

different layers of the compressible network. 

For experimental verification of the developed 

method, the problem of image recognition using a 

low-resolution camera on the CIFAR10 dataset was 

taken; the convolutional neural network VGGNet, 

which contains convolutional and fully connected 

layers, was used as a test network. As analogous 

methods, we took a method based on the principle of 

network pruning (MagBase), as well as a method 

based on sparse representation using the sparse cod-

ing method (SFAC).  

Experiments showed that proposed method 

manages to obtain compressed structure with 2,56 % 

of original network parameters number. This com-

pression results in lowering the network inference 

time (by 93,7 %) and power consumption by 94,8 %. 

Possible directions for the continuation of the 

work are the further study of dependencies between 

the structure of the neural network and the efficiency 

of its operation, which will further reduce the infer-

ence time and energy consumption. 
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АНОТАЦІЯ 

У цій статті основна увага приділяється розробці методу компресії нейронних мереж, який заснований на механізмі 

виключення нейронів прихованих шарів. Вищезазначені нейронні мережі створюються для обробки даних, що генеруються 

численними сенсорами, присутніми в трансдюсерних мережах, які використовуються в області створення розумних будин-

ків. Запропонований метод реалізує єдиний підхід до компресії як згорткових нейронних мереж, так і рекурентних нейрон-

них мереж, які використовуються для задач класифікації і регресії. Основний принцип цього методу заснований на механіз-

мі виключення, який використовується в якості механізму регуляризації нейронних мереж. Ідея запропонованого методу 

полягає у виборі оптимальної ймовірності виключення нейрона прихованого шару на основі параметра надмірності. Новиз-

на цього методу полягає у використанні спеціальної мережі-оптимізатора, яка представляє собою рекурентну нейронну ме-

режу, що дозволяє обчислювати параметр надмірності не тільки на одному прихованому шарі, але і на кількох шарах. Дода-

тковий аспект новизни полягає в ітеративній оптимізації мережі-оптимізатора для постійного поліпшення обчислення пара-

метрів надмірності вхідної нейронної мережі. Для експериментальної оцінки запропонованого методу була обрана задача 

розпізнавання зображень камерою низького розширення, для емуляції сценарію використовувався набір даних CIFAR10. В 

якості експериментальної нейронної мережі була обрана згорткова нейронна мережа VGGNet, яка містить згорткові і повно-

зв'язні шари. В якості методів-аналогів був узятий метод MagBase, який заснований на принципі спарцифікаціі, а також 

метод, заснований на розрідженому представленні з використанням підходу розрідженого кодування SFAC. Результати екс-

перименту показали, що кількість параметрів в скомпресованій моделі складає всього 2,38 % від оригінальної моделі. Це 

дозволило скоротити час логічного висновку на 93,7 % і споживання енергії на 94,8 %. Запропонований метод дозволяє 

ефективно використовувати глибокі нейронні мережі в трансдюсерних мережах, що використовують архітектуру перифе-

рійних обчислень. Це, в свою чергу, дозволяє системі обробляти дані в реальному часі, скоротити споживання енергії і час 

логічного висновку, а також зменшити вимоги до пам'яті та сховища для реальних додатків. 

Ключові слова: Розумна будівля; інтернет речей; компресія нейронних мереж; проріджування мережі; розріджене 

представлення нейронної мережі; рекурентна нейронна мережа; короткочасна довгострокова пам'ять 
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