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ABSTRACT 
 
The paper presents solutions to the actual problem of intelligent analysis of telemetry data from small satellites in order to de-

tect its technical states. Neural network models based on modern deep learning architectures have been developed and investigated to 

solve the problem of binary classification of telemetry data. It makes possible to determine the normal and abnormal state of the 

small satellites or some of its subsystems. For the computer analysis, the data of the functioning of the small satellites navigation 

subsystem were used: a time series with a dimension of 121690 × 9. A comparative analysis was carried out of fully connected, one-

dimensional convolution and recurrent (GRU, LSTM) neural networks. We analyzed hybrid neural network models of various 

depths, which are sequential combinations of all three types of layers, including using the technology of adding residual connections 

of the ResNet family. Achieved results were compared with results of widespread neural network models AlexNet, LeNet, Inception, 

Xception, MobileNet, ResNet, and Yolo, modified for time series classification. The best result, in terms of classification accuracy at 

the stages of training, validation and testing, and the execution time of one training and validation epoch, were obtained by the devel-

oped hybrid neural network models of three types of layers: one-dimensional convolution, recurrent GRU and fully connected classi-

fication layers, using the technology of adding residual connections. In this case, the input data were normalized. The obtained classi-

fication accuracy at the training, validation and testing stages was 0.9821, 0.9665, 0.9690, respectively. The execution time of one 

learning and validation epoch was twelve seconds. At the same time, the modified Inception model showed the best alternative result 

in terms of accuracy: 0.9818, 0.9694, 0.9675. The execution time of one training and validation epoch was twenty seven seconds. 

That is, there was no increase in the classification accuracy when adapting the well-known neural network models used for image 

analysis. But the training and validation time in the case of the best Inception model increased by more than two times. Thus, pro-

posed and analyzed hybrid neural network model showed the highest accuracy and minimum training and validation time in solving 

the considered problem according to compared with a number of developed and widely known and used deep neural network models.  
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INTRODUCTION 

One of the most important tasks at all stages of 

the life cycle of small spacecraft (SS) is the analysis 

of their telemetry data (TD) about the functioning of 

the SS in terms of determining their technical state 

to ensure safe operation and correct control. The rel-

evance is primarily because one of the main reasons 

for the loss of SS are failures and incorrect operation 

of the SS. 

A large amount of information, arriving from 

SS and accumulating in specialized databanks, can 

be effectively used to improve the process of deter-

mining the technical state of the small spacecraft and 

its subsystems. 

The functioning data of the small spacecraft, in-

cluding telemetric data, are heterogeneous irregular 

multidimensional data.   
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Therefore relevant is the research, development 

and application of models that allow you to analyze 

this kind of data. It gives the ability to extract useful 

information from them and then build classification 

and predictive models using them in order to deter-

mine the technical state of the SS for making correct 

control and operational decisions in the process of 

SS operation. 

Methods of machine learning, artificial intelli-

gence and bioinspired models are currently one of 

the most promising and widely used approaches in 

data analysis of high-tech systems. Vivid and well-

known examples of their application are the devel-

opments of such companies as Facebook, Google, 

Amazon, Yandex, and research centers of Massa-

chusetts Institute of Technology, universities of 

Cambridge, Stanford, Berkeley, Princeton, Southern 

California, Montreal, Moscow Institute of Physics 

and Technology, Higher School of Economics, 

Bauman Moscow State Technical University. 
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Today, to solve the listed tasks, to ensure the 

required degree of autonomy, quality and efficiency 

of control of such complex objects as small space-

craft, it is necessary to perform complex automation 

and intellectualization of the estimation processes 

and multi-model analysis of SS telemetric infor-

mation data. However, in most cases, in practice, 

automation is performed, at best, only partially, and 

much is done often manually, based on heuristic 

rules [1]. At the same time, in accordance with 

GOST 1410-002-2010 and the Strategy for digital 

transformation of the rocket and space industry until 

2025 and the prospect until 2030 of the state corpo-

ration Roscosmos, an important task is to create a 

so-called information system on the technical state 

and the reliability of space complexes (SC) and their 

constituent products [2, 3]. 

Thus, the task of intelligent analysis of small 

spacecraft telemetry data in order to determine the 

technical state of small spacecraft is relevant and in 

demand. At the same time, the development and ap-

plication of methods for analyzing TD SS based on 

models of artificial intelligence, machine learning 

and bioinspired systems allows solving the problem 

at a new scientific and engineering theoretical and 

applied levels and increasing the efficiency of the 

control and operational processes for SS ground con-

trol systems. 

1. STATEMENT OF THE TD SS BINARY 

CLASSIFICATION PROBLEM 

The initial telemetry data is a time series, which 

can be represented as a matrix  𝑿 = (𝑥𝑖𝑗), where i–

th row 𝑿𝑖 is the analyzed vector of telemetry 

indicators at the i-th moment of time, the j index cor-

responds to the  j-th  indicator of the  telemetry at 

the i-th  vector 𝑿𝑖. 

Definition 1. One-dimensional time series 𝑿 =
(𝑥1, 𝑥2, … , 𝑥𝑇) - an ordered set of real values. The 

length of 𝑿 is equal to the number of real values T. 

Definition 2. An M-dimensional time series 

𝑿 = (𝑿1, 𝑿2, … , 𝑿𝑀) consists of M different one-

dimensional time series 𝑿𝑗 ∈ 𝑅𝑇. 

Obviously that considering TD time series is M-

dimensional time series 𝑿 = (𝑿1, 𝑿2, … , 𝑿𝑀), each 

element of which 𝑿𝑗  is a column of the TD matrix 𝑿 

and at the same time a univariate time series describ-

ing the behavior of the  j-th  telemetry indicator on 

an interval of discrete times [1, 𝑇]. 

For each vector of telemetry indicators at the 

i-th moment of time 𝑿𝑖, a label of the class 𝑦𝑖 ∈ 𝒀 is 

assigned, which characterizes the SS functioning 

state analyzed basing on the SS telemetry data or its 

subsystems. 

We consider the case of a binary classification, 

since the final goal is to determine whether the ana-

lyzed vector 𝑿𝑖 of the M-dimensional time series 𝑿 

belongs to the failure-free or failure state. In this 

case, the number of classes 𝐾 = 2 and, therefore, 𝒀∈ 

{0,1}, where 0 denotes a failure-free state and 1 - a 

failure state of the SS system under analysis. 

Thus, the task is to find out the classification 

model of the following mapping: 

𝑦:𝑿 → 𝒀.                               (1) 

To encode class labels, we use One Hot encod-

ing. In this case the vector 𝑿𝑖 of the M-dimensional 

time series 𝑿 is labelled by the vector 𝒀𝑖 = (𝑦𝑖0, 𝑦𝑖1) 

of dimension 𝐾 = 2. The vector 𝒀𝑖 contains only one 

value 1, which corresponds to the class label 0: (1,0) 

or 1: (0,1) (Fig.1). 

 

Fig.1. Example of One Hot encoding of           

class labels  
Source: compiled by the author 

2.  MACHINE LEARNING MODELS IN THE 

CLASSIFICATION PROBLEM OF TIME 

SERIES 

Over the past two decades, time series classifi-

cation has been considered as one of the most diffi-

cult problems in the area of data mining [4, 5]. With 

the increasing availability of temporal data [6], hun-

dreds of algorithms have been proposed since 2015 

[7]. In fact, any classification problem using data 

that is recorded taking into account some notion of 

ordering can be viewed as a time series classification 

problem [8]. Time series are found in many real ap-

plications: data processing of electronic medical 

records, recognition of human activity, classification 

of acoustic scenes, cybersecurity, SS functioning 

states analysis according to TD [9, 10], [11, 12], [13, 

14]. 

Recent publications have been focused on the 

development of ensemble methods [15, 16], [17, 18]. 

These approaches use either an ensemble of decision 

trees (random forest) or an ensemble of different 
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types of discriminant classifiers (support vector ma-

chines (SVMs), k-nearest neighbors (kNN) classifi-

ers with several distance functions) on one or more 

feature spaces. Most of these approaches have a data 

transformation step that transforms the original time 

series. 

This approach stimulated the development of an 

ensemble of 35 COTE classifiers (Collective Of 

Transformation-based Ensembles) [15], which not 

only combines different classifiers for the same 

transformation, but instead combines different clas-

sifiers for different representations of different time 

series. In [19, 20], the advantages of COTE were 

improved using a hierarchical voting system, having 

received the HIVE-COTE method. HIVE-COTE. 

HIVE-COTE is currently considered as the leading 

time series classification algorithm among classical 

machine learning models when evaluating 85 da-

tasets from the UCR/UEA archive [7]. To achieve 

high accuracy, HIVE-COTE becomes extremely 

computationally demanding and impractical for 

solving real problems of intelligent analysis of big 

data [7]. 

This approach requires the training of thirty-

seven classifiers, as well as cross-validation of each 

hyperparameter of these algorithms, which makes it 

impossible to train this approach in some situations. 

To emphasize this impossibility, note that one of 

these thirty-seven classifiers is the Shapelet trans-

formation [16], the time complexity of which is 

𝑂(𝑛2𝑙4), where n is the number of one-dimensional 

time series in the dataset, and l – the length of the 

time series. 

Having analyzed the current state-of-the-art of 

classical non deep classifier models, we have estab-

lished the impracticality of advanced approaches in a 

number of cases of solving the real big data analysis 

problems for classifying the time series. Therefore, 

let us focus further on models of deep learning or 

neural network models, which have been widely 

used in recent years to solve various problems of big 

data mining [21]. This motivated their use for solv-

ing the problems of time series analysis [8, 11], [22]. 

3. DEEP LEARNING NEURAL NETWORK 

MODELS  

Artificial neural networks are a convenient and 

natural basis for representing information models. 

Definition 3. An artificial neural network (neu-

ral network model, ANN) is a system consisting of a 

set of elementary processors connected by the type 

of nodes of a directed graph, called artificial or for-

mal neurons, and capable of generating output in-

formation in response to the input action. 

Each neuron is characterized by its current 

state, by analogy with the nerve cells in the brain, 

which can be excited or inhibited. It has a group of 

synapses – unidirectional input connections connect-

ed to the outputs of other neurons, and also has an 

axon – an output connection of a given neuron, from 

which a signal (excitation or inhibition) enters the 

synapses of the following neurons. 

An artificial neuron imitates the properties of a 

biological neuron. Here, a set of input signals, indi-

cated as ix , ni ,1 , are fed to an artificial neuron. 

These input signals, collectively denoted by the vec-

tor 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝑛), correspond to signals arriv-

ing at the synapses of a biological neuron. Each syn-

apse is characterized by the magnitude of the synap-

tic connection or its weight 𝑤𝑖. Every input signal is 

multiplied by the corresponding weight 𝑤𝑖, and sup-

plied to the adder block. Each weighting factor cor-

responds to the “strength” of one biological synaptic 

connection and is analogous to the synapse of bio-

logical neurons. If the value of the coefficient is 

negative, then it is customary to consider the i-th 

connection as inhibitory, if positive – as exciting. 

The set of weights in the aggregate are denoted by 

the vector �⃗⃗� . The adder block corresponds to the 

body of a biological neuron. It adds the weighted 

inputs algebraically, creating the value S. The result-

ing value S is fed to the activation output function 

)(Sa  of the neuron, simulating the process of acti-

vation or inhibition of input impulses or the nonline-

ar transfer characteristic of a biological neuron. 

Thus, the mathematical model of an artificial 

neuron can be represented by the expression 

)()(
1





n

i
ii bxwaSay ,                 (2) 

where: y is the output signal of the neuron; b – initial 

bias  of the neuron. 

In an enlarged form, ANN performs a function-

al mapping between input and output, and can serve 

as an information model of the mapping (1). Accord-

ing to [23, 24], the function determined by the neural 

network can be arbitrary with easily met require-

ments for the structural complexity of the network 

and the presence of nonlinearity in the transient (ac-

tivation) functions of neurons. 

Thus, a neural network model consisting of a 

set of interconnected artificial neurons is a bioin-

spired model of neural biological systems. At the 

same time, modern neural network models have 

found wide application in the theory and practice of 

data mining and machine learning, including in clas-

sification problems of time series of various nature 

[8, 9], [10, 11], [12, 13], [14], [21, 22]. 
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In the process of development and analysis, we 

shall consider neural network models from simple to 

more complex, starting with the basic neural net-

work models now: 

– fully connected neural networks/layers 

(FCNN); 

– one-dimensional convolutional neural net-

works/layers (1D CNN); 

– recurrent neural networks/layers (RNN) like 

Long Short-Term Memory (LSTM) and Gated Re-

current Units (GRU), and continuing them with 

combinations of all basic layers, including, based on 

the method of using the residual connections of the 

family ResNet. 

A comparative analysis will also be carried out 

with the well-known models AlexNet, LeNet, Incep-

tion, Xception, MobileNet, ResNet, Yolo. 

Fully connected neural networks/layers can be 

considered using the example of the following  

2-layer network, which is shown in Fig. 2 and is 

given by the formulas: 

𝑿 = (𝑥1, 𝑥2, 𝑥3) – input vector of input layer; 

definition of hidden layer: 

 𝒁1 = 𝑾1𝑿 + 𝒃1;  𝑨𝟏 = 𝑎1(𝒁
1);  

definition of output layer: 

 𝒁2 = 𝑾2𝑨𝟏 + 𝒃2; 
  �̂� = 𝑨𝟐 = 𝑎2(𝒁

2),  
where: 𝑾𝑖 − weighting coefficient values;  

𝒃𝑖 – bias values; 

𝑎𝑖(𝒁
𝑖) − activation functions of layers. 

 

Fig.2. An example of a two-layer fully-connected 

neural network 
Source: compiled by the author 

We shall use the following widely used activa-

tion functions in our models [25, 26]: 

– function relu – rectified linear unit  

𝑟𝑒𝑙𝑢 (𝑧)  =  𝑚𝑎𝑥 (0, 𝑧) ; 

– generalization of the logistic function for One 

Hot encoding of class labels 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒
𝑧𝑗1

𝑗=0

, 

where: 𝑧𝑖 = 𝑊𝑖𝑌 – the value of the i-th component 

of the output layer; 𝑌 – the output vector of the pre-

vious layer or the input vector in the case of a single-

layer neural network or regression model; 𝑊𝑖 – vec-

tor of weighting coefficients of connections from 

vector Y to output 𝑧𝑖.  

As the loss function, we shall use the binary 

crossentropy function, since we are solving the bina-

ry classification problem [25, 26]. 

Unlike 2D convolutional neural networks/layers 

used in image analysis, we will explore one-

dimensional convolutional networks/layers [5, 26]. 

Similar to 2D convolutions that extract 2D templates 

from image tensors and apply identical transfor-

mations to every such template, one-dimensional 

convolutions can be used to extract one-dimensional 

templates (subsequences) from time series. This type 

of one-dimensional convolutional layers are capable 

of recognizing local patterns in a sequence. 

 

Рис.3. How a 1D convolutional neural  

         network/layer works 
           Source: compiled by [26] 

In contrast to fully connected networks, the 

same convolution (the same filter values w and b) 

will be used to find the result for all time stamps t ∈ 

[1, T]. This is a very powerful property of 1D CNN, 

which allows them to study time-invariant filters. 

When considering a time series as input to a convo-

lutional layer, the filter no longer has one dimension 

(time), but also has dimensions that are equal to the 

number of dimensions in the input time series. Since 

the same transformations are applied to each tem-

plate, one or another template found at some posi-

tion in the sequence can later be recognized at a dif-

ferent position, which makes the transformations 

performed by 1D CNN networks/layers invariant (in 

time). For example, a 1D CNN network that pro-

cesses a sequence of values and uses a convolution 

window with a size of 5 is able to memorize subse-

quences of a series of up to 5 elements and recog-

 𝐻𝑖𝑑𝑑𝑒𝑛 𝑙𝑎𝑦𝑒𝑟 𝒁1 

𝑨𝟏 = 𝑎1(𝒁
1
) 

 �̂� = 𝑨
𝟐

= 𝑎2(𝒁
2
) 

Input 
layer 
 

𝑂𝑢𝑡𝑝𝑢𝑡  

𝑙𝑎𝑦𝑒𝑟 𝒁2 
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nize them in any context in the input sequence of a 

time series (Fig. 3). 

Instead of manually adjusting the ω filter val-

ues, these values should be learned automatically as 

they are highly dependent on the target dataset. For 

example, one dataset will have an optimal filter of    

(1, 2, 2), while another dataset will have an optimal 

filter of (2, 0, -1). By optimal, we mean a filter, the 

application of which will allow the classifier to easi-

ly distinguish between the classes of the data set [5, 

26]. 

The information extracted by the convolution is 

fed, as in the case of a fully connected ANN, to the 

input of the activation function a(Z). A block of 1D 

CNN layers must be followed by a discriminant 

classifier, which is usually a block of fully connect-

ed layers. It can be preceded by an aggregation op-

eration (Pooling), which can also be present as an 

intermediate layer between 1D CNN blocks of lay-

ers. Pooling average (AveragePooling) or maximum 

(MaxPooling) takes an input time series and reduces 

its length T by aggregating in a sliding window of 

the time series. For example, if the length of the slid-

ing window is 3, the resulting merged time series 

will have a length equal to T/3 (this is true only if 

the step is equal to the length of the sliding window). 

The essence of aggregation is element-wise multi-

plication in a sliding window of a subsequence by a 

mask, calculating the average or maximum value 

and replacing the subsequence with it. 

A distinctive feature of the neural net-

works/layers that we have looked at is the lack of 

memory. Each input is processed independently 

without saving the state between them in this case. A 

recurrent neural network processes a sequence, iter-

ating over its elements and preserving the state ob-

tained when processing previous elements. In fact, 

RNN is a kind of neural network with an internal 

state [25, 26] (Fig. 4).  

 

Fig.4. General diagram of a recurrent neural 

network/layer 
Source: compiled by [25] 

One of the well-known RNN models is the 

LSTM RNN (Long Short-Term Memory). The 

LSTM cell is shown in Fig. 5 and consists of three 

main gate nodes: an input gate, a logic gate, and an 

output gate, which form a recurrent cell with a hid-

den state. 

 

Fig.5. LSTM cell structure 
    Source: compiled by [25] 

At the same time, RNN resembles micro-
electronic sequential circuits with memory, decom-
posed into its combinational iterative equivalent. 

If we denote by 𝑥𝑡 input vector at time t, ℎ𝑡  – 
hidden state vector at time t, weight matrices: 
in 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒: 
𝑊𝑥𝑐 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑐 – from the hid-
den state vector at the moment of time t-1; 
in 𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒:  
𝑊𝑥𝑖 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑖 – from the hid-
den state vector at the moment of time t-1; 
in 𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒:  

𝑊𝑥𝑓 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑓 – from the 

hidden state vector at the moment of time t-1; 
in 𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒: 
𝑊𝑥𝑜 –  from the input vector 𝑥𝑡, 𝑊ℎ𝑜 – from the hid-
den state vector at the moment of time t-1, 
𝑏𝑐′, 𝑏𝑖, 𝑏𝑓 , 𝑏𝑜 – vectors of biases in cells 

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒, 𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒,  𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒, 
𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒 accordingly, 
we get the following formal definition of how the 
LSTM works on the next input 𝑥𝑡, having the hidden 
state from the previous step  ℎ𝑡−1 and the actual 
state of the cell 𝑐𝑡−1, we sequentially calculate [25]: 

𝑐𝑡
′ = tanh(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐′)   

𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒,    
𝑖𝑡 = σ(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖)                   
𝑖𝑛𝑝𝑢𝑡 𝑔𝑎𝑡𝑒,  
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𝑓𝑡 = σ(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓)            

𝑓𝑜𝑟𝑔𝑒𝑡 𝑔𝑎𝑡𝑒,  

𝑜𝑡 = σ(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜)         
𝑜𝑢𝑡𝑝𝑢𝑡 𝑔𝑎𝑡𝑒,  
𝑐𝑡 = 𝑓𝑡°𝑐𝑡−1 + 𝑖𝑡°𝑐𝑡

′                                      
𝑐𝑒𝑙𝑙 𝑠𝑡𝑎𝑡𝑒,  
ℎ𝑡 = 𝑜𝑡°tanh (𝑐𝑡)                                      
𝑏𝑙𝑜𝑐𝑘 𝑜𝑢𝑡𝑝𝑢𝑡. 

In work [27] in 2014, a modification of LSTM 
recurrent networks – Gated Recurrent Unit (GRU) 
was proposed, which reduced the complexity of 
LSTM model and training time. In this architecture, 
the hidden state ℎ𝑡 aligned with memory value 𝑐𝑡.  

 

Fig.6. GRU cell structure 
Source: compiled by [25] 

This is how a single GRU cell works [25]: 
𝑢𝑡 = σ(𝑊𝑥𝑢𝑥𝑡 + 𝑊ℎ𝑢ℎ𝑡−1 + 𝑏𝑢), 
𝑟𝑡 = σ(𝑊𝑥𝑟𝑥𝑡 + 𝑊ℎ𝑟ℎ𝑡−1 + 𝑏𝑟), 

ℎ𝑡
′ = tanh(𝑊𝑥ℎ′𝑥𝑡 + 𝑊ℎℎ′(𝑟𝑡°ℎ𝑡−1)), 

ℎ𝑡 = (1 − 𝑢𝑡)°ℎ𝑡
′ + 𝑢𝑡°ℎ𝑡−1. 

Here 𝑢𝑡 – update gate; 𝑟𝑡 – reset gate, he is also re-
sponsible for what part of memory needs to be trans-
ferred further from the last step, but he does this 
even before the nonlinear function is applied. 
Memory cell and block output ℎ𝑡 in this case, unlike 
LSTMs, are not separated in any way, and the next 
output ℎ𝑡 obtained as a combination (set by the gate 
𝑢𝑡) previous output ℎ𝑡−1 and the current output can-
didate ℎ′𝑡, which, in turn, also depends on ℎ𝑡−1, but 
through the reset gate 𝑟𝑡 (Fig.6). 

4. DEVELOPMENT AND ANALYSIS OF 

NEURAL NETWORK MODELS 

Based on the neural network architectures de-

scribed above, the following neural models have 

been proposed and investigated. The developed 

models were implemented in Python using the Keras 

and Tensorflow deep learning libraries (other librar-

ies necessary for processing and visualizing data 

were also used: numpy, matplotlib, pandas and 

scikit-learn). Accordingly, the pseudocode of the 

given models is based and close to the 

Keras/Tensorflow notation for better reproducibility. 

Fully connected neural network model: 

Z = Dense(16, activation='relu') (𝑿𝑖) 

Z = Dense(16, activation='relu') (Z) 

Z = Dense(2, activation='softmax') (Z),  

where Dense – fully connected layer notation 

[25,26]. 

Convolutional 1D CNN model: 

Z = Conv1D(filters=256, kernel_size=4, activa-

tion='relu') (𝑿𝑖)  

Z = MaxPooling1D(2) (Z) 

Z = Conv1D(filters=128, kernel_size=2, activa-

tion='relu') (Z) 

Z = GlobalMaxPooling1D (Z) 

Z = Dense(2, activation='softmax') (Z) 

Recurrent LSTM model: 

Z = LSTM(units=64) (𝑿𝑖) 

Z = LSTM(units=32) (Z) 

Z = LSTM(units=16) (Z) 

Z = Dense(2, activation='softmax') (Z) 

Recurrent GRU model: 

Z = GRU (units=64) (𝑿𝑖) 

Z = GRU (units=32) (Z) 

Z = GRU (units=16) (Z) 

Z = Dense(2, activation='softmax') (Z) 

Computer analysis was carried out on real te-

lemetry data of one of the navigation subsystems of 

the small spacecraft. Each vector of the TD matrix 

𝑿𝑖 has a dimension of 9 and is labelled 0 in the case 

of a free-failre state and 1 in the case of failre state 

of the subsystem. The total dimension of the 9-

dimensional time series X is 121,690 vectors, 77881 

vectors make up the training dataset, 19471 vectors 

make up the validation dataset, 24338 vector make 

up the test dataset. 

For the above group of neural network models, 

training and validation were carried out with the fol-

lowing values of hyperparameters: the “adam” train-

ing method (as one of the most effective at the mo-

ment), the loss function “binary_crossentropy”, the 

number of training epochs – 500, mini-batch size – 

128. The early stopping mechanism [26] was not used 

and the learning and validation process took place at 

all 500 epochs. The results of computer experiments 

including the value of accuracy and loss function on 

the training, validation and training sets, as well as the 

time for one epoch, are shown in  

Table 1. 
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Table 1. Experimental data of non-hybrid neural network models 

NN type Training Validation Testing Time of one 

training & 

validation 

epoch, sec 

Accuracy Loss Accuracy Loss Accuracy Loss 

Fully-connected NN 0.8816 0.2831 0.8810 0.2835 0.8809 0.2851 3 

Convolutional neural 

network 1D CNN  

0.9065 0.2206 0.9037 0.2336 0.8999 0.2654 3 

Recurrent LSTM NN 0. 9617 0. 0912 0. 9487 0. 1408 0.9485 0.1425 31 

Recurrent GRU NN 0.9485  0.1215 0.9358 0.1633 0.9336 0.1723 26 
 

Source: compiled by the author 

As the data in Table 1 show, a fully connected 

model has the least accuracy at the training, valida-

tion and testing stages, while its training and valida-

tion time is the smallest. A more accurate model (> 

0.9) is a 1D CNN model, and the training and vali-

dation time is equal to the time of the fully connect-

ed model. Recurrent models are obviously the lead-

ers in accuracy, and the GRU model at the stage of 

training, validation and testing is not much inferior 

to LSTM. At the same time, in terms of training and 

validation time, the GRU model rather outperforms 

the LSTM. Therefore, we draw a conclusion about 

the leadership of the LSTM model in terms of accu-

racy in this series of experiments. If the accuracy of 

the model is enough to have more than 0.9 and the 

factor of training time and model lightness is im-

portant, then the 1D CNN convolutional model is 

more attractive. An increase in the number of layers 

and neurons in the layers of models did not lead to 

an increase in the quality of the models. The oppo-

site effect of reaching a plateau and a decrease in 

accuracy in the learning process was often observed. 

The further goal of the research was, on the one 

hand, to increase the accuracy of the model, on the 

other hand, to reduce its training and validation time, 

that is, to obtain a lighter-weight model compared to 

recurrent ones. For this purposes, we consider hybrid 

models consisting the three blocks of layers: convo-

lutional Conv1D, recurrent GRU or LSTM, and as a 

result, as a discriminant classifier, a fully connected 

block: 

Z = Conv1D(filters=512, kernel_size=4, activa-

tion='relu') (𝑿𝑖) 

Z = Conv1D(filters=512, kernel_size=4, activa-

tion='relu') (Z) 

Z = Conv1D(filters=512, kernel_size=4, activa-

tion='relu') (Z) 

Z = Pooling1D(2) (Z) 

Z = Conv1D(filters=256, kernel_size=2, activa-

tion='relu') (Z) 

Z = Conv1D(filters=256, kernel_size=2, activa-

tion='relu') (Z) 

Z = Conv1D(filters=256, kernel_size=2, activa-

tion='relu') (Z) 

Z = RNN(units=64) (Z) 

Z = Dense(2, activation='softmax') (Z) 

Based on this architecture, several neural net-

work models were obtained by using the Average-

Pooling and MaxPooling methods in the aggregation 

layer; in the recurrent layers the cells of the GRU 

and LSTM types were used. The input time series 

with initial and normalized values in the range from 

0 to 1 was also considered, using the MinMaxScaler 

function. The training was also carried out at 500 

epochs, but the mechanism of early stopping was 

used in case of reaching a plateau of the validation 

accuracy within 10 iterations. Experiments have 

shown that in this case the duration of training and 

validation was no more than 160 epochs. In the re-

current layer, l2 regularization was used to aliminate 

overfitting [25,26]. 

The results of computer experiments represent-

ing the value of accuracy and loss functions on the 

training, validation and test sets are shown 

in Table 2. Also time of one training and validation 

epoch is given. 

Based on the data in Table 2, in terms of accu-

racy and time of one training and validation epoch, 

in this group of models, the model with Average-

Pooling and GRU cell is leading with a slight ad-

vantage. 

The next group of models was built on the basis 

of the architecture of the previous model and the 

method of adding residual connections. Develop-

ment of this method began with appearing the Res-

Net family of networks, developed by Kaiming He 

and colleagues at Microsoft [26, 28] (Fig. 7). 
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Table 2. Experimental data of hybrid sequential models  

NN type Training Validation Testing Time of one train-

ing & validation 

epoch, sec 
Accuracy Loss Accuracy Loss Accuracy Loss 

AveragePooling, GRU 0.9850  0.0333 0.9680 0.1364 0.9661 0.1327 14 

MaxPooling, GRU 0.9810  0.0488 0.9588 0.1557 0.9604 0.1413 14 

AveragePooling, LSTM 0.9816  0.0464 0.9649 0.1195 0.9655 0.1188 17 

MaxPooling, LSTM 0.9808  0.0454 0.9629 0.1255 0.9642 0.1202 17 

AveragePooling, GRU, 

normalized data 

0.9796  0.0452 0.9675 0.1138 0.9659 0.1039 15 

MaxPooling, GRU, nor-

malized data 

0.9789  0.0439 0.9686 0.1077 0.9674 0.1151 15 

AveragePooling, LSTM, 

normalized data 

0.9791  0.0447 0.9662 0.1070 0.9671 0.1022 16 

MaxPooling, LSTM, nor-

malized data 

0.9765  0.0572 0.9640 0.1028 0.9661 0.0942 17 

Source: compiled by the author 

 

Fig.7. Residual connection: reinjection of prior 
information by adding to the feature map of  

later layers  
Source: compiled by [26] 

Also, the number of convolutional layers has 
been increased and the number of filters in them has 
been reduced. 
𝒁1 = Conv1D(filters=64, kernel_size=4, activa-
tion='relu') (𝑿𝑖) 

𝒁1 = Conv1D(filters=64, kernel_size=4, activa-

tion='relu') (𝒁1) * 9 слоев 

𝒁2 = add([𝒁1, 𝑿𝑖]) – residual connection 𝑿𝑖 

𝒁2 = Pooling1D(2)( 𝒁2)  

𝒁3 = Conv1D(filters=64, kernel_size=2, activa-

tion='relu') (𝒁2)  

𝒁3 = Conv1D(filters=64, kernel_size=2, activa-

tion='relu') (𝒁2) * 9 слоев 

𝒁4 = Pooling1D(2)( 𝑿𝑖) 

Output = add([𝒁2, 𝒁3, 𝒁4]) – residual connections 

𝒁2 and  𝒁3 

Output = GRU(units=32) (Output ) 

Output = Dense(32, activation='relu') (Output) 

Output = Dense(2, activation='softmax') (Output) 

The results of computer experiments represent-

ing the value of accuracy and loss function on the 

training, validation and test sets, as well as the time 

of one training and validation epoch, are given in 

Table 3. 

Table 3. Experimental data of hybrid models using residual connections  

NN type Training Validation Testing Time of one train-

ing & validation 

epoch, sec 
Accuracy Loss Accuracy Loss Accuracy Loss 

AveragePooling, GRU 0.9787  0.0844 0.9610 0.1389 0.9584 0.1483 13 

MaxPooling, GRU 0.9816  0.0667 0.9619 0.1331 0.9624 0.1334 12 

AveragePooling, LSTM 0.9791  0.0629 0.9574 0.1360 0.9570 0.1318 13 

MaxPooling, LSTM 0.9784  0.0926 0.9587 0.1451 0.9580 0.1524 13 

AveragePooling, GRU, 

normalized data 

0.9821  0.0625 0.9665 0.1091 0.9690 0.1075 12 

MaxPooling, GRU, 

normalized data 

0.9799  0.0736 0.9646 0.1213 0.9663 0.1154 12 

AveragePooling, LSTM, 

normalized data 

0.9726  0.0970 0.9573 0.1445 0.9581 0.1408 12 

MaxPooling, LSTM, 

normalized data 

0.9630  0.1166 0.9531 0.1428 0.9539 0.1403 12 

Source: compiled by the author 
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According to Table 3, based on the ratio of the 

accuracy value and the loss function, at the training, 

validation and testing stages, as well as the time of 

one training and validation epoch, the leader is a 

model with the parameters: AveragePooling, GRU 

and normalized data. 

Further, the computer analysis results of the ap-

plication of widely known and used neural network 

models AlexNet, LeNet, Inception, Xception, Mo-

bileNet, ResNet, Yolo was carried out for the prob-

lem under consideration. As a basis, we used the 

program code from the repository of the series of 

online workshops “Machine Learning Tokyo - De-

mocratizing Machine Learning” [29], which was 

modified for the task of classifying the TD time se-

ries of the analyzed SS subsystem. The results of 

computer experiments, representing the value of ac-

curacy and loss function on the training, validation 

and test sets, as well as the time of one training and 

validation epoch, are given in Table 4.  

Based on the data in Table 4, we can conclude 

that the best results in terms of classification accura-

cy values and execution time of one training and 

validation epoch were shown by a modified deep 

neural network model of the Inception family, de-

veloped by Christian Szegedy and colleagues at 

Google [26, 30]. It used the AveragePooling aggre-

gation layer, the LSTM recurrent layer, and data 

normalization. There was no significant increase in 

the values of accuracy and decrease in the values of 

losses at the stages of validation and testing for the 

last group of models. At the same time, the time of 

one epoch of training and validation has increased 

more than 2 times. In addition, the Inception model 

has become significantly more complicated in com-

parison with the best-developed model from Table 3. 

Therefore, to solve the problem under consideration, 

the use of this group of models, unfortunately not 

advisable. 

CONCLUSION 

Neural network models based on modern deep 

learning architectures have been developed and in-

vestigated to solve the problem of binary classifica-

tion of telemetry data, which make it possible to de-

termine the normal and abnormal state of function-

ing of the SS navigation subsystem. A computer 

analysis was carried out on the real TD, which made 

it possible to assess the quality of the developed 

models at the stages of training, validation and test-

ing. This analysis showed the advantage of hybrid 

neural network models, which are a sequential con-

nection of three blocks of layers: convolutional 1D 

CNN, recurrent GRU and the final fully connected 

classifier block, using the AveragePooling aggrega-

tion layer, the method of the residual connections 

and normalizing the initial data. A similar model 

also performed well without residual connections 

and input data normalization. In general, when solv-

ing the problem under consideration, an accuracy of 

more than 0.96 at the stages of validation and testing 

was achieved. 

Further research of modern neural network 

models for the problem of binary and non-binary 

classification of time series, as well as methods for 

automating the search for optimal hyperparameters 

values of models and their architectures, is promis-

ing. 

 

Table 4. Experimental data of modified neural network models 

NN type Training Validation Testing Time of one 

training & vali-

dation epoch, 

sec 

Accuracy 

 

Loss Accuracy 

 

Loss Accuracy 

 

Loss 

AlexNet 0.9221 0.1772 0.9215 0.1817 0.9228 0.1782 22 

LeNet 0.8690 0.3011 0.8669 0.3062 0.8695 0.3072 10 

Inception 0.9818 0.0406 0.9694 0.1045 0.9675 0.1154 27 

Xception 0.9226 0.1749 0.9252 0.1748 0.9216 0.1755 96 

MobileNet 0.9650 0.0776 0.9608 0.0949 0.9597 0.0975 35 

ResNet 0.9685 0.0687 0.9656 0.0969 0.9644 0.0924 79 

Yolo 0.9359 0.1665 0.9302 0.1815 0.9322 0.1783 37 

Source: compiled by the author 

 

 



Applied Aspects of Information Technology                           2021; Vol. 4 No.4: 299–310 

308  ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

REFERENCES 

1. Ohtilev, M. Y U., Mustafin, N. G., Miller, V. E. & Sokolov, B. V. “The concept of proactive man-

agement of complex objects: theoretical and technological foundations” (in Russian). Journal of Instrument 

Engineering. 2014; Vol. 57 No.11: 7–14.  

2.  GOST RO 1410-002-2010. “Rocket and space technology. Information system about the technical 

condition and reliability of space complexes and their products” (in Russian). 

3. “Project of information technology strategy of the State Corporation "Roscosmos"” (in Russian). – 

Available from: https://www.roscosmos.ru/25892/. – [Accessed: 15 Nov. 2020]. 

4.  Yang, Q. & Wu, X. “Ten challenging problems in data mining research”. International Journal of In-

formation Technology & Decision Making. 2006; Vol.5 No. 04: 597–604. 

DOI: https://doi.org/10.1142/S0219622006002258. 

5.  Ismail Fawaz, H., Forestier, G., Weber, J. & Idoumghar, L. “Pierre-alain muller deep learning for 

time series classification: a review”. Data Mining and Knowledge Discovery. 2019; 33: 917–963. 

DOI: https://doi.org/10.1007/s10618-019-00619-1. 

6.  Silva, D. F., Giusti, R., Keogh, E. & Batista, G. “Speeding up similarity search under dynamic time 

warping by pruning unpromising alignments”. Data Min Knowl Discov. 2018; 32(4); 988–1016. 

DOI: https://doi.org/10.1007/s10618-018-0557-y. 

7.  Bagnall, A., Lines, J., Bostrom, A., Large, J.  &, Keogh, E. “The great time series classification bake 

off: a review and experimental evaluation of recent algorithmic advances”. Data Min Knowl Discov.  2017; 

31(3): 606–660. DOI: https://doi.org/ 10.1007/s10618-016-0483-9. 

8. Cristian Borges Gamboa J. “Deep learning for time-series analysis”. 2017. – Available from: 

arXiv:1701.01887. – [Accessed: 15 Nov. 2020]. 

9.  Rajkomar, A., Oren, E., Chen, K., Dai, A. M., Hajaj, N., Liu, P. J., Liu, X., Sun, M., Sundberg, P., 

Yee, H., Zhang, K., Duggan, G. E., Flores, G., Hardt, M., Irvine, J., Le, Q., Litsch, K., Marcus, J., Mossin, 

A., Tansuwan, J., Wang, D., Wexler, J., Wilson, J., Ludwig, D., Volchenboum, S. L., Chou, K., Pearson, M., 

Madabushi, S., Shah, N. H., Butte,  A. J., Howell, M., Cui, C., Corrado, G. & Dean, J.  “Scalable and accu-

rate deep learning with electronic health records”. NPJ Digit Med. 2018. p.1:18. DOI: https://doi.org/ 

10.1038/s41746-018-0029-1. 

10. Nweke, H. F., Teh, Y. W., Al-garadi, M. A. & Alo, U. R. “Deep learning algorithms for human ac-

tivity recognition using mobile and wearable sensor networks: state of the art and research challenges”. Ex-

pert Syst Appl. 2018; 105: 233–261. DOI: https://doi.org/10.1016/j.eswa.2018.03.056. 

11. Nwe, T. L, Dat, T. H. & Ma, B. “Convolutional neural network with multi-task learning scheme for 

acoustic scene classification”. In: Asia-Pacific Signal and Information Processing Association Annual Sum-

mit and Conference. 2017. p.1347–1350. DOI: https://doi.org/10.1109/APSIPA.2017.8282241. 

12. Susto, G. A., Cenedese, A. & Terzi, M. “Time-series classification methods: review and applica-

tions to power systems data”. In: Big Data Application in Power Systems. 2018. p.179–220. 

DOI: https://doi.org/10.1016/B978-0-12-811968-6.00009-7. 

13. Skobtsov, V., Novoselova, N., Arhipov, V. & Potryasaev, S. “Intelligent telemetry data analysis of 

small satellites” In: Silhavy R., Senkerik R., Kominkova Oplatkova Z., Prokopova Z., Silhavy P. (eds) “Cy-

bernetics and Mathematics Applications in Intelligent Systems”. CSOC 2017. Advances in Intelligent Sys-

tems and Computing – Springer. 2017; Vol. 574: 351–361. DOI: https://doi.org/10.1007/978-3-319-57264-

2_36. 

14. Skobtsov, V. Yu. & Arhipau, V. I. “Neural network analysis of telemetry data of on-board equip-

ment of spacecraft”. Space Engineering and Technology. 2021; No. 3(34):  111–124 (in Russian). 

DOI: https://doi.org/10.33950/spacetech-2308-7625-2021-3-111-124.  

15. Bagnall, A., Lines, J., Hills, J. & Bostrom, A.  “Time-series classification with COTE: the collec-

tive of transformation-based ensembles”. In: International Conference on Data Engineering. 2016. p.1548–

1549. DOI: https://doi.org/10.1109/ICDE.2016.7498418. 

16. Hills, J., Lines, J., Baranauskas, E., Mapp, J. & Bagnall, A. “Classification of time series by shape-

let transformation”. Data Min Knowl Discov. 2014; 28(4): 851–881. DOI: https://doi.org/10.1007/s10618-

013-0322-1.  

17. Bostrom, A. & Bagnall, A.  “Binary shapely transform for multiclass time series classification. In: 

Big data analytics and knowledge discovery”. 2015. p. 257–269. DOI: https://doi.org/10.1007/978-3-662-

55608-5_2. 



Applied Aspects of Information Technology                           2021; Vol. 4 No.4: 299–310 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

 309 

 

18. Baydogan, M. G. “Multivariate time series classification datasets”. 2015.  – Available at: 

http://www.mustafabaydogan.com. – [Accessed: 15 Nov. 2020]. 

19. Lines, J., Taylor, S. & Bagnall, A. “HIVE-COTE: the hierarchical vote collective of transfor-

mation-based ensembles for time series classification”.  In: IEEE International Conference on Data Mining. 

2016. p.1041–1046. DOI: https://doi.org/10.1109/ICDM.2016.0133. 

20. Lines, J., Taylor, S. & Bagnall, A. “Time series classification with HIVE-COTE: the hierarchical 

vote collective of transformation-based ensembles”. ACM Trans Knowl Discov Data. 2018; 12(5): 52:1–

52:35. DOI: https://doi.org/10.1145/3182382. 

21. LeCun, Y., Bengio, Y. & Hinton, G. “Deep learning”. Publ. Nature. 2015;  521: 436–444. 

DOI: http://dx.doi.org/10.1038/nature14539. 

22. Wang, Z., Yan, W. & Oates, T. “Time series classification from scratch with deep neural networks: 

a strong baseline”. In: International Joint Conference on Neural Networks. 2017. p.1578–1585. 

DOI: http://dx.doi.org/10.1109/IJCNN.2017.7966039. 

23. Gorban, A. N., Dunin-Barkovsky, V. L., Kirdin, A. N. et al. “Neuroinformatics” (in Russian). Publ. 

Nauka. Novosibirsk: Russian Federation.  1998. 296 p.  

24. Tsaregorodtsev, V. G. “Neuroimitator NEUROPRO” (in Russian).  Neuroinformatics and its appli-

cations: Book of abstracts of VI All-Russian workshop. KSTU. Krasnoyarsk: Russian Federation. October 2-

5, 1998.  207 p.  

25. Nikolenko, S., Kadurin, A. & Arkhangelskaya, E. “Deep learning” (in Russian). SPb.: Piter. Rus-

sian Federation 2018. 480 p.  

26. Chollet, F. “Deep Learning with Python”. Manning Publ. Shelter: Island, NY. 2018. 384 p. 

27. Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H. & Bengio, 

Y. “Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation”.  

2014. – Available at:  arXiv: 1406.1078. – [Accessed: 15 Nov. 2020]. 

28. Kaiming, He., et al. “Deep Residual Learning for Image Recognition”.  Conference on Computer 

Vision and Pattern Recognition. 2015. – Available at:  https://arxiv.org/abs/1512.03385. – [Accessed: 15 

Nov. 2020]. 

29. “Machine Learning Tokyo – Democratizing Machine Learning”. – Available from:  

https://github.com/Machine-Learning-Tokyo/DL-workshop-

series/blob/master/Part%20I%20%20Convolution%20Operations/ConvNets.ipynb. – [Accessed: 15 Nov. 

2020]. 

30. Szegedy, C. et al. “Going Deeper with Convolutions”. Conference on Computer Vision and Pattern 

Recognition. 2014. – Available from:  https://arxiv.org/abs/1409.4842. – [Accessed: 15 Nov 2020]. 
 
Conflicts of Interest: The authors declare no conflict of interest 

 
 
Received        09.01.2021 
Received after revision 12.03.2021 
Accepted        15.03.2021 

 

 

 

 

DOI: https://doi.org/10.15276/aait.04.2021.1 

УДК 004.8 

 

Бінарна класифікація даних телеметричної інформації малих 

космічних апаратів на основі глибокого навчання 
 

Вадим Юрійович Скобцов  
ORCID: https://orcid.org/0000-0002-8546-0430; vasko_vasko@mail.ru. Scopus Author ID: 8361519700 

Об’єднаний інститут проблем інформатики НАН Білорусії, вул. Сурганова, 6. Мінськ, 220012, Білорусь 

                  Білоруський державний університет інформатики та радіоелектроніки. вул. Гікало, 9, Мінськ, 220013, Білорусь 

https://arxiv.org/abs/1512.03385
https://doi.org/


Applied Aspects of Information Technology                           2021; Vol. 4 No.4: 299–310 

310  ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

 

АНОТАЦІЯ 
 

У статті надано розв’язання актуальної задачі інтелектуального аналізу даних телеметричної інформації малих косміч-

них апаратів з метою визначення їх технічних станів. Розроблено нейромережеві моделі на основі сучасних архітектур гли-

бокого навчання для вирішення задачі бінарної класифікації даних телеметричної інформації, що дозволяють визначати 

штатний та позаштатний стан функціонування малих космічних апаратів або деяких їх підсистем. Для комп'ютерного аналі-

зу використовувалися дані функціонування навігаційної підсистеми малих космічних апаратів, часовий ряд розмірністю 

121690×9. Проводився порівняльний аналіз повнозв'язних, одновимірних згорткових та рекурентних (GRU, LSTM) нейрон-

них мереж, нейронних моделей різної глибини, які є послідовними комбінаціями всіх трьох типів шарів, у тому числі з ви-

користанням технології додавання залишкових зв'язків сімейства ResNet, широко поширених нейромережних моделей 

AlexNet, LeNet , Inception, Xception, MobileNet, ResNet, Yolo, що є модифікованими для класифікації часових рядів. Най-

кращий результат з точки зору точності класифікації на етапах навчання, валідації, тестування, та часу виконання однієї 

епохи навчання та валідації отримали розроблені послідовні нейромережеві моделі з трьох типів шарів: одновимірних згор-

ткових, рекурентного GRU та повнозв’язкового класифікаційного шарів. Вхідні дані було внормовано. Точність класифіка-

ції на етапах навчання, валідації та тестування склали відповідно: 0.9821, 0.9665, 0.9690. Час виконання однієї епохи нав-

чання та валідації склав дванадцять сек. При цьому найкращий альтернативний результат показала модифікована модель 

Inception: 0.9818, 0.9694, 0.9675. Час виконання однієї епохи навчання та валідації для цієї моделі склав двадцять сiм сек. 

Збільшення точності класифікації під час адаптації відомих нейромережевих моделей, які використовуються для аналізу 

зображень, отримано не було, але час навчання та валідації у разі кращої моделі Inception збільшився більш ніж у два рази. 

Були запропоновані та проаналізовані гібридні нейромережеві моделі, у тому числі з використанням методики прокидання 

залишкових зв'язків сімейства ResNet. Вони показали найбільшу точність та мінімальний час навчання та валідації моделі у 

вирішенні поставленої задачі порівняно з низкою розроблених та широко відомих, застосовуваних глибоких нейромереже-

вих моделей. 
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жі/шари; рекурентні мережі/шари 
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