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ABSTRACT

The paper presents solutions to the actual problem of intelligent analysis of telemetry data from small satellites in order to de-
tect its technical states. Neural network models based on modern deep learning architectures have been developed and investigated to
solve the problem of binary classification of telemetry data. It makes possible to determine the normal and abnormal state of the
small satellites or some of its subsystems. For the computer analysis, the data of the functioning of the small satellites navigation
subsystem were used: a time series with a dimension of 121690 x 9. A comparative analysis was carried out of fully connected, one-
dimensional convolution and recurrent (GRU, LSTM) neural networks. We analyzed hybrid neural network models of various
depths, which are sequential combinations of all three types of layers, including using the technology of adding residual connections
of the ResNet family. Achieved results were compared with results of widespread neural network models AlexNet, LeNet, Inception,
Xception, MobileNet, ResNet, and Yolo, modified for time series classification. The best result, in terms of classification accuracy at
the stages of training, validation and testing, and the execution time of one training and validation epoch, were obtained by the devel-
oped hybrid neural network models of three types of layers: one-dimensional convolution, recurrent GRU and fully connected classi-
fication layers, using the technology of adding residual connections. In this case, the input data were normalized. The obtained classi-
fication accuracy at the training, validation and testing stages was 0.9821, 0.9665, 0.9690, respectively. The execution time of one
learning and validation epoch was twelve seconds. At the same time, the modified Inception model showed the best alternative result
in terms of accuracy: 0.9818, 0.9694, 0.9675. The execution time of one training and validation epoch was twenty seven seconds.
That is, there was no increase in the classification accuracy when adapting the well-known neural network models used for image
analysis. But the training and validation time in the case of the best Inception model increased by more than two times. Thus, pro-
posed and analyzed hybrid neural network model showed the highest accuracy and minimum training and validation time in solving
the considered problem according to compared with a number of developed and widely known and used deep neural network models.
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INTRODUCTION Therefore relevant is the research, development
and application of models that allow you to analyze
this kind of data. It gives the ability to extract useful
information from them and then build classification
and predictive models using them in order to deter-
mine the technical state of the SS for making correct
control and operational decisions in the process of
SS operation.

Methods of machine learning, artificial intelli-
gence and bioinspired models are currently one of
the most promising and widely used approaches in
data analysis of high-tech systems. Vivid and well-
known examples of their application are the devel-
opments of such companies as Facebook, Google,
Amazon, Yandex, and research centers of Massa-
chusetts Institute of Technology, universities of
Cambridge, Stanford, Berkeley, Princeton, Southern
California, Montreal, Moscow Institute of Physics

One of the most important tasks at all stages of
the life cycle of small spacecraft (SS) is the analysis
of their telemetry data (TD) about the functioning of
the SS in terms of determining their technical state
to ensure safe operation and correct control. The rel-
evance is primarily because one of the main reasons
for the loss of SS are failures and incorrect operation
of the SS.

A large amount of information, arriving from
SS and accumulating in specialized databanks, can
be effectively used to improve the process of deter-
mining the technical state of the small spacecraft and
its subsystems.

The functioning data of the small spacecraft, in-
cluding telemetric data, are heterogeneous irregular
multidimensional data.

and Technology, Higher School of Economics,
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Today, to solve the listed tasks, to ensure the
required degree of autonomy, quality and efficiency
of control of such complex objects as small space-
craft, it is necessary to perform complex automation
and intellectualization of the estimation processes
and multi-model analysis of SS telemetric infor-
mation data. However, in most cases, in practice,
automation is performed, at best, only partially, and
much is done often manually, based on heuristic
rules [1]. At the same time, in accordance with
GOST 1410-002-2010 and the Strategy for digital
transformation of the rocket and space industry until
2025 and the prospect until 2030 of the state corpo-
ration Roscosmos, an important task is to create a
so-called information system on the technical state
and the reliability of space complexes (SC) and their
constituent products [2, 3].

Thus, the task of intelligent analysis of small
spacecraft telemetry data in order to determine the
technical state of small spacecraft is relevant and in
demand. At the same time, the development and ap-
plication of methods for analyzing TD SS based on
models of artificial intelligence, machine learning
and bioinspired systems allows solving the problem
at a new scientific and engineering theoretical and
applied levels and increasing the efficiency of the
control and operational processes for SS ground con-
trol systems.

1. STATEMENT OF THE TD SS BINARY
CLASSIFICATION PROBLEM

The initial telemetry data is a time series, which
can be represented as a matrix X = (x;;), where i—
th row X; is the analyzed vector of telemetry
indicators at the i-t2 moment of time, the ;j index cor-
responds to the j-t2 indicator of the telemetry at
the i-th vector X;.

Definition 1. One-dimensional time series X =
(x4, %5, ...,x7) - an ordered set of real values. The
length of X is equal to the number of real values T.

Definition 2. An M-dimensional time series
X = (X,,X,,...,Xy) consists of M different one-
dimensional time series X; € R”.

Obviously that considering TD time series is M-
dimensional time series X = (X;1,X5, ..., X)), each
element of which X; is a column of the TD matrix X
and at the same time a univariate time series describ-
ing the behavior of the j-th telemetry indicator on
an interval of discrete times [1, T].

For each vector of telemetry indicators at the
i-th moment of time X;, a label of the class y; € Y is
assigned, which characterizes the SS functioning
state analyzed basing on the SS telemetry data or its
subsystems.

We consider the case of a binary classification,
since the final goal is to determine whether the ana-
lyzed vector X; of the M-dimensional time series X
belongs to the failure-free or failure state. In this
case, the number of classes K = 2 and, therefore, Ye
{0,1}, where 0 denotes a failure-free state and 1 - a
failure state of the SS system under analysis.

Thus, the task is to find out the classification
model of the following mapping:

yv:X-Y. Q)

To encode class labels, we use One Hot encod-
ing. In this case the vector X; of the M-dimensional
time series X is labelled by the vector Y; = (¥;0, Vi1)
of dimension K = 2. The vector ¥; contains only one
value 1, which corresponds to the class label 0: (1,0)
or 1: (0,1) (Fig.1).

0 1
11488 1 ]
11489 1 ]
11490 2 1
11491 e 1
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Fig.1. Example of One Hot encoding of

class labels
Source: compiled by the author

2. MACHINE LEARNING MODELS IN THE
CLASSIFICATION PROBLEM OF TIME
SERIES

Over the past two decades, time series classifi-
cation has been considered as one of the most diffi-
cult problems in the area of data mining [4, 5]. With
the increasing availability of temporal data [6], hun-
dreds of algorithms have been proposed since 2015
[7]. In fact, any classification problem using data
that is recorded taking into account some notion of
ordering can be viewed as a time series classification
problem [8]. Time series are found in many real ap-
plications: data processing of electronic medical
records, recognition of human activity, classification
of acoustic scenes, cybersecurity, SS functioning
states analysis according to TD [9, 10], [11, 12], [13,
14].

Recent publications have been focused on the
development of ensemble methods [15, 16], [17, 18].
These approaches use either an ensemble of decision
trees (random forest) or an ensemble of different
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types of discriminant classifiers (support vector ma-
chines (SVMs), k-nearest neighbors (KNN) classifi-
ers with several distance functions) on one or more
feature spaces. Most of these approaches have a data
transformation step that transforms the original time
series.

This approach stimulated the development of an
ensemble of 35 COTE classifiers (Collective Of
Transformation-based Ensembles) [15], which not
only combines different classifiers for the same
transformation, but instead combines different clas-
sifiers for different representations of different time
series. In [19, 20], the advantages of COTE were
improved using a hierarchical voting system, having
received the HIVE-COTE method. HIVE-COTE.
HIVE-COTE is currently considered as the leading
time series classification algorithm among classical
machine learning models when evaluating 85 da-
tasets from the UCR/UEA archive [7]. To achieve
high accuracy, HIVE-COTE becomes extremely
computationally demanding and impractical for
solving real problems of intelligent analysis of big
data [7].

This approach requires the training of thirty-
seven classifiers, as well as cross-validation of each
hyperparameter of these algorithms, which makes it
impossible to train this approach in some situations.
To emphasize this impossibility, note that one of
these thirty-seven classifiers is the Shapelet trans-
formation [16], the time complexity of which is
0(n?1*), where n is the number of one-dimensional
time series in the dataset, and | — the length of the
time series.

Having analyzed the current state-of-the-art of
classical non deep classifier models, we have estab-
lished the impracticality of advanced approaches in a
number of cases of solving the real big data analysis
problems for classifying the time series. Therefore,
let us focus further on models of deep learning or
neural network models, which have been widely
used in recent years to solve various problems of big
data mining [21]. This motivated their use for solv-
ing the problems of time series analysis [8, 11], [22].

3. DEEP LEARNING NEURAL NETWORK
MODELS

Artificial neural networks are a convenient and
natural basis for representing information models.

Definition 3. An artificial neural network (neu-
ral network model, ANN) is a system consisting of a
set of elementary processors connected by the type
of nodes of a directed graph, called artificial or for-
mal neurons, and capable of generating output in-
formation in response to the input action.

Each neuron is characterized by its current
state, by analogy with the nerve cells in the brain,
which can be excited or inhibited. It has a group of
synapses — unidirectional input connections connect-
ed to the outputs of other neurons, and also has an
axon — an output connection of a given neuron, from
which a signal (excitation or inhibition) enters the
synapses of the following neurons.

An artificial neuron imitates the properties of a
biological neuron. Here, a set of input signals, indi-

cated as X;,i = l_n are fed to an artificial neuron.

These input signals, collectively denoted by the vec-
tor X = (xq, x5, ..., x,,), correspond to signals arriv-
ing at the synapses of a biological neuron. Each syn-
apse is characterized by the magnitude of the synap-
tic connection or its weight w;. Every input signal is
multiplied by the corresponding weight w;, and sup-
plied to the adder block. Each weighting factor cor-
responds to the “strength” of one biological synaptic
connection and is analogous to the synapse of bio-
logical neurons. If the value of the coefficient is
negative, then it is customary to consider the i-th
connection as inhibitory, if positive — as exciting.
The set of weights in the aggregate are denoted by
the vector w. The adder block corresponds to the
body of a biological neuron. It adds the weighted
inputs algebraically, creating the value S. The result-
ing value S is fed to the activation output function
a(S) of the neuron, simulating the process of acti-

vation or inhibition of input impulses or the nonline-
ar transfer characteristic of a biological neuron.

Thus, the mathematical model of an artificial
neuron can be represented by the expression

y:a(s)za(znlwixi +b), ()

where: y is the output signal of the neuron; b — initial
bias of the neuron.

In an enlarged form, ANN performs a function-
al mapping between input and output, and can serve
as an information model of the mapping (1). Accord-
ing to [23, 24], the function determined by the neural
network can be arbitrary with easily met require-
ments for the structural complexity of the network
and the presence of nonlinearity in the transient (ac-
tivation) functions of neurons.

Thus, a neural network model consisting of a
set of interconnected artificial neurons is a bioin-
spired model of neural biological systems. At the
same time, modern neural network models have
found wide application in the theory and practice of
data mining and machine learning, including in clas-
sification problems of time series of various nature
[8, 9], [10, 11], [12, 13], [14], [21, 22].
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In the process of development and analysis, we
shall consider neural network models from simple to
more complex, starting with the basic neural net-
work models now:

— fully connected neural
(FCNN);

— one-dimensional convolutional neural net-
works/layers (1D CNN);

— recurrent neural networks/layers (RNN) like
Long Short-Term Memory (LSTM) and Gated Re-
current Units (GRU), and continuing them with
combinations of all basic layers, including, based on
the method of using the residual connections of the
family ResNet.

A comparative analysis will also be carried out
with the well-known models AlexNet, LeNet, Incep-
tion, Xception, MobileNet, ResNet, Yolo.

Fully connected neural networks/layers can be
considered using the example of the following
2-layer network, which is shown in Fig. 2 and is
given by the formulas:

X = (x4, x5, x3) — input vector of input layer;
definition of hidden layer:
Z' =w'X +b'; A' = a,(Z");
definition of output layer:
Z* = w?Al + b*;
y = A* = a,(2%),
where: W' — weighting coefficient values;
b! — bias values;
a;(Z") — activation functions of layers.

networks/layers

Input
layer
x1
e
xz A
_—
X <
Hidden layer Z*
Al = a,(Z 1)

Fig.2. An example of a two-layer fully-connected

neural network
Source: compiled by the author

We shall use the following widely used activa-
tion functions in our models [25, 26]:

— function relu — rectified linear unit

relu (z) = max (0,z) ;

— generalization of the logistic function for One
Hot encoding of class labels
e?i

softmax(z;) = STV
j=0

where: z; = W;Y — the value of the i-th component
of the output layer; Y — the output vector of the pre-
vious layer or the input vector in the case of a single-
layer neural network or regression model; W; — vec-
tor of weighting coefficients of connections from
vector Y to output z;.

As the loss function, we shall use the binary
crossentropy function, since we are solving the bina-
ry classification problem [25, 26].

Unlike 2D convolutional neural networks/layers
used in image analysis, we will explore one-
dimensional convolutional networks/layers [5, 26].
Similar to 2D convolutions that extract 2D templates
from image tensors and apply identical transfor-
mations to every such template, one-dimensional
convolutions can be used to extract one-dimensional
templates (subsequences) from time series. This type
of one-dimensional convolutional layers are capable
of recognizing local patterns in a sequence.

Window of
size 5
/—Aﬁ
Input Input
features
+ Time
Extracted
patch
i Dot product
* with weights
Output
Qutput
s l features

Puc.3. How a 1D convolutional neural

network/layer works
Source: compiled by [26]

In contrast to fully connected networks, the
same convolution (the same filter values w and b)
will be used to find the result for all time stamps t €
[1, T]. This is a very powerful property of 1D CNN,
which allows them to study time-invariant filters.
When considering a time series as input to a convo-
lutional layer, the filter no longer has one dimension
(time), but also has dimensions that are equal to the
number of dimensions in the input time series. Since
the same transformations are applied to each tem-
plate, one or another template found at some posi-
tion in the sequence can later be recognized at a dif-
ferent position, which makes the transformations
performed by 1D CNN networks/layers invariant (in
time). For example, a 1D CNN network that pro-
cesses a sequence of values and uses a convolution
window with a size of 5 is able to memorize subse-
quences of a series of up to 5 elements and recog-
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nize them in any context in the input sequence of a
time series (Fig. 3).

Instead of manually adjusting the o filter val-
ues, these values should be learned automatically as
they are highly dependent on the target dataset. For
example, one dataset will have an optimal filter of
(1, 2, 2), while another dataset will have an optimal
filter of (2, 0, -1). By optimal, we mean a filter, the
application of which will allow the classifier to easi-
ly distinguish between the classes of the data set [5,
26].

The information extracted by the convolution is
fed, as in the case of a fully connected ANN, to the
input of the activation function a(Z). A block of 1D
CNN layers must be followed by a discriminant
classifier, which is usually a block of fully connect-
ed layers. It can be preceded by an aggregation op-
eration (Pooling), which can also be present as an
intermediate layer between 1D CNN blocks of lay-
ers. Pooling average (AveragePooling) or maximum
(MaxPooling) takes an input time series and reduces
its length T by aggregating in a sliding window of
the time series. For example, if the length of the slid-
ing window is 3, the resulting merged time series
will have a length equal to T/3 (this is true only if
the step is equal to the length of the sliding window).
The essence of aggregation is element-wise multi-
plication in a sliding window of a subsequence by a
mask, calculating the average or maximum value
and replacing the subsequence with it.

A distinctive feature of the neural net-
works/layers that we have looked at is the lack of
memory. Each input is processed independently
without saving the state between them in this case. A
recurrent neural network processes a sequence, iter-
ating over its elements and preserving the state ob-
tained when processing previous elements. In fact,
RNN is a kind of neural network with an internal
state [25, 26] (Fig. 4).
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Fig.4. General diagram of a recurrent neural

network/layer
Source: compiled by [25]

One of the well-known RNN models is the
LSTM RNN (Long Short-Term Memory). The
LSTM cell is shown in Fig. 5 and consists of three
main gate nodes: an input gate, a logic gate, and an
output gate, which form a recurrent cell with a hid-
den state.
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Fig.5. LSTM cell structure
Source: compiled by [25]

At the same time, RNN resembles micro-
electronic sequential circuits with memory, decom-
posed into its combinational iterative equivalent.

If we denote by x; input vector at time t, h; —
hidden state vector at time t, weight matrices:
in candidate cell state:

W, — from the input vector x;, W, — from the hid-
den state vector at the moment of time t-1;

in input gate:

W,; — from the input vector x;, W; — from the hid-
den state vector at the moment of time t-1;

in forget gate:

Wys — from the input vector x;, Wy — from the
hidden state vector at the moment of time t-1;

in output gate:

W,, — from the input vector x;, W,,, — from the hid-
den state vector at the moment of time t-1,

bc, by, bs, by vectors of biases in cells
candidate cell state, input gate, forget gate,
output gate accordingly,

we get the following formal definition of how the
LSTM works on the next input x;, having the hidden
state from the previous step h;_; and the actual
state of the cell ¢;_, we sequentially calculate [25]:
c; = tanh(Wyexy + Wyche—q + b,r)

candidate cell state,

iy = o(Wyxixe + Wyihe—q + by)

input gate,
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ft = O'(foxt + thht—l + bf)
forget gate,

0r = 6(Wyoxy + Whohe—1 + by)
01Ltpztt57ate,

¢t = fe°Ce-1 + it°cq

cell state,

h; = o,°tanh(c;)

block output.

In work [27] in 2014, a modification of LSTM
recurrent networks — Gated Recurrent Unit (GRU)
was proposed, which reduced the complexity of
LSTM model and training time. In this architecture,
the hidden state h, aligned with memory value c;.

A S P R P S ——

| GRU-svevika :
Q| {
8| f
1 @O 1
hes | Wi, : hy
| Q
||| reset f 1___’ |
1| gate s :
I 9
r |
: W, 2 W, |
| W, cand, | O :
| — cell @ lu——» X
I state :
: h |
| \ Wl 1 |
| »| update s 1
| gate | I
: e = l |
1 Uy I

Fig.6. GRU cell structure
Source: compiled by [25]
This is how a single GRU cell works [25]:
ur = oWy xe + Wiyhe—q + by),
Tt = o(Wyrxe + Wprhe—q + by),
he = tanh(Wyp e + Wyp (1 *he—1)),
he = (1 —ue)°he + uehe—g.
Here u; — update gate; r; — reset gate, he is also re-
sponsible for what part of memory needs to be trans-
ferred further from the last step, but he does this
even before the nonlinear function is applied.
Memory cell and block output h; in this case, unlike
LSTMs, are not separated in any way, and the next
output h; obtained as a combination (set by the gate
u;) previous output h,_; and the current output can-
didate h';, which, in turn, also depends on h;_;, but
through the reset gate r; (Fig.6).

4. DEVELOPMENT AND ANALYSIS OF
NEURAL NETWORK MODELS

Based on the neural network architectures de-
scribed above, the following neural models have
been proposed and investigated. The developed
models were implemented in Python using the Keras
and Tensorflow deep learning libraries (other librar-

ies necessary for processing and visualizing data

were also used: numpy, matplotlib, pandas and

scikit-learn). Accordingly, the pseudocode of the

given models is based and close to the

Keras/Tensorflow notation for better reproducibility.
Fully connected neural network model:

Z = Dense(16, activation="relu’) (X;)

Z = Dense(16, activation="relu’) (2)

Z = Dense(2, activation="softmax") (2),

where Dense — fully connected layer notation
[25,26].

Convolutional 1D CNN model:

Z = Convl1D(filters=256, kernel_size=4, activa-
tion="relu’) (X;)

Z = MaxPooling1lD(2) (2)

Z = Convl1D(filters=128, kernel_size=2, activa-
tion="relu") (2)

Z = GlobalMaxPooling1D (Z)

Z = Dense(2, activation='softmax’) (2)

Recurrent LSTM model:

Z = LSTM(units=64) (X;)

Z = LSTM(units=32) (2)

Z = LSTM(units=16) (Z)

Z = Dense(2, activation='softmax’) (2)

Recurrent GRU model:

Z = GRU (units=64) (X;)

Z = GRU (units=32) (2)

Z = GRU (units=16) (2)

Z = Dense(2, activation="softmax’) (2)

Computer analysis was carried out on real te-
lemetry data of one of the navigation subsystems of
the small spacecraft. Each vector of the TD matrix
X; has a dimension of 9 and is labelled O in the case
of a free-failre state and 1 in the case of failre state
of the subsystem. The total dimension of the 9-
dimensional time series X is 121,690 vectors, 77881
vectors make up the training dataset, 19471 vectors
make up the validation dataset, 24338 vector make
up the test dataset.

For the above group of neural network models,
training and validation were carried out with the fol-
lowing values of hyperparameters: the “adam” train-
ing method (as one of the most effective at the mo-
ment), the loss function “binary crossentropy”, the
number of training epochs — 500, mini-batch size —
128. The early stopping mechanism [26] was not used
and the learning and validation process took place at
all 500 epochs. The results of computer experiments
including the value of accuracy and loss function on
the training, validation and training sets, as well as the
time for one  epoch, are  shown in
Table 1.
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Table 1. Experimental data of non-hybrid neural network models

NN type Training Validation Testing Time of one
Accuracy Loss Accuracy Loss Accuracy | Loss training &

validation
epoch, sec

Fully-connected NN 0.8816 0.2831 0.8810 0.2835 0.8809 0.2851 3

Convolutional neural 0.9065 0.2206 0.9037 0.2336 0.8999 0.2654 3

network 1D CNN

Recurrent LSTM NN 0.9617 0. 0912 0. 9487 0. 1408 0.9485 0.1425 31

Recurrent GRU NN 0.9485 0.1215 0.9358 0.1633 0.9336 0.1723 26

Source: compiled by the author
As the data in Table 1 show, a fully connected Z = Conv1D(filters=256, kernel_size=2, activa-

model has the least accuracy at the training, valida- tion='relu’) (2)

tion and testing stages, while its training and valida- Z = Conv1D(filters=256, kernel_size=2, activa-

tion time is the smallest. A more accurate model (> tion="relu’) (2)

0.9) is a 1D CNN model, and the training and vali- Z = Conv1D(filters=256, kernel_size=2, activa-

dation time is equal to the time of the fully connect-
ed model. Recurrent models are obviously the lead-
ers in accuracy, and the GRU model at the stage of
training, validation and testing is not much inferior
to LSTM. At the same time, in terms of training and
validation time, the GRU model rather outperforms
the LSTM. Therefore, we draw a conclusion about
the leadership of the LSTM model in terms of accu-
racy in this series of experiments. If the accuracy of
the model is enough to have more than 0.9 and the
factor of training time and model lightness is im-
portant, then the 1D CNN convolutional model is
more attractive. An increase in the number of layers
and neurons in the layers of models did not lead to
an increase in the quality of the models. The oppo-
site effect of reaching a plateau and a decrease in
accuracy in the learning process was often observed.

The further goal of the research was, on the one
hand, to increase the accuracy of the model, on the
other hand, to reduce its training and validation time,
that is, to obtain a lighter-weight model compared to
recurrent ones. For this purposes, we consider hybrid
models consisting the three blocks of layers: convo-
lutional Conv1D, recurrent GRU or LSTM, and as a
result, as a discriminant classifier, a fully connected
block:

Z = Conv1D(filters=512, kernel_size=4, activa-
tion="relu’) (X;)

Z = Convl1D(filters=512, kernel_size=4, activa-
tion="relu’) (2)

Z = Convl1D(filters=512, Kkernel_size=4, activa-
tion="relu’) (2)

Z = PoolinglD(2) (2)

tion="relu") (2)
Z = RNN(units=64) (Z)
Z = Dense(2, activation="softmax’) (Z)

Based on this architecture, several neural net-
work models were obtained by using the Average-
Pooling and MaxPooling methods in the aggregation
layer; in the recurrent layers the cells of the GRU
and LSTM types were used. The input time series
with initial and normalized values in the range from
0 to 1 was also considered, using the MinMaxScaler
function. The training was also carried out at 500
epochs, but the mechanism of early stopping was
used in case of reaching a plateau of the validation
accuracy within 10 iterations. Experiments have
shown that in this case the duration of training and
validation was no more than 160 epochs. In the re-
current layer, I, regularization was used to aliminate
overfitting [25,26].

The results of computer experiments represent-
ing the value of accuracy and loss functions on the
training, validation and test sets are shown
in Table 2. Also time of one training and validation
epoch is given.

Based on the data in Table 2, in terms of accu-
racy and time of one training and validation epoch,
in this group of models, the model with Average-
Pooling and GRU cell is leading with a slight ad-
vantage.

The next group of models was built on the basis
of the architecture of the previous model and the
method of adding residual connections. Develop-
ment of this method began with appearing the Res-
Net family of networks, developed by Kaiming He
and colleagues at Microsoft [26, 28] (Fig. 7).
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Table 2. Experimental data of hybrid sequential models

NN type Training Validation Testing Time of one train-
Accuracy | Loss | Accuracy | Loss | Accuracy | Loss ing & validation
epoch, sec
AveragePooling, GRU 0.9850 | 0.0333 | 0.9680 | 0.1364 | 0.9661 | 0.1327 14
MaxPooling, GRU 0.9810 | 0.0488 | 0.9588 | 0.1557 | 0.9604 | 0.1413 14
AveragePooling, LSTM 0.9816 | 0.0464 | 0.9649 | 0.1195 | 0.9655 | 0.1188 17
MaxPooling, LSTM 0.9808 | 0.0454 | 0.9629 | 0.1255 | 0.9642 | 0.1202 17
AveragePooling, GRU, 0.9796 | 0.0452 | 0.9675 | 0.1138 | 0.9659 | 0.1039 15
normalized data
MaxPooling, GRU, nor- 0.9789 | 0.0439 | 0.9686 | 0.1077 | 0.9674 | 0.1151 15
malized data
AveragePooling, LSTM, 0.9791 | 0.0447 | 0.9662 | 0.1070 | 0.9671 | 0.1022 16
normalized data
MaxPooling, LSTM, nor- 0.9765 | 0.0572 | 0.9640 | 0.1028 | 0.9661 | 0.0942 17
malized data
Source: compiled by the author
Z, = ConvlD(filters=64, kernel_size=4, activa-

Layer

Residual
connection

Layer

Layer

Layer

il

Fig.7. Residual connection: reinjection of prior
information by adding to the feature map of

later layers
Source: compiled by [26]

Also, the number of convolutional layers has
been increased and the number of filters in them has
been reduced.

Z, = ConvlD(filters=64, kernel_size=4, activa-
tion="relu’) (X;)

tion="relu’) (Z,) * 9 cioes

Z, =add([Z,, X;]) — residual connection X;

Z, = PoolinglD(2)( Z,)

Z; = Convl1D(filters=64, kernel_size=2, activa-

tion="relu’) (Z,)

Z; = ConvlD(filters=64, Kkernel_size=2, activa-

tion="relu’) (Z,) * 9 coes

Z, = PoolinglD(2)( X;)

Output = add([Z,, Z3, Z,]) — residual connections

Z,and Z,

Output = GRU(units=32) (Output )

Output = Dense(32, activation="relu’) (Output)

Output = Dense(2, activation="softmax") (Qutput)
The results of computer experiments represent-

ing the value of accuracy and loss function on the

training, validation and test sets, as well as the time

of one training and validation epoch, are given in

Table 3.

Table 3. Experimental data of hybrid models using residual connections

NN type Training Validation Testing Time of one train-
Accuracy | Loss | Accuracy | Loss | Accuracy | Loss ing & validation
epoch, sec
AveragePooling, GRU 0.9787 0.0844 0.9610 0.1389 0.9584 0.1483 13
MaxPooling, GRU 0.9816 0.0667 0.9619 0.1331 0.9624 0.1334 12
AveragePooling, LSTM 0.9791 0.0629 0.9574 0.1360 0.9570 0.1318 13
MaxPooling, LSTM 0.9784 0.0926 0.9587 0.1451 0.9580 0.1524 13
AveragePooling, GRU, 0.9821 0.0625 0.9665 0.1091 0.9690 0.1075 12
normalized data
MaxPooling, GRU, 0.9799 0.0736 0.9646 0.1213 0.9663 0.1154 12
normalized data
AveragePooling, LSTM, 0.9726 0.0970 0.9573 0.1445 0.9581 0.1408 12
normalized data
MaxPooling, LSTM, 0.9630 0.1166 0.9531 0.1428 0.9539 0.1403 12
normalized data

Source: compiled by the author
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According to Table 3, based on the ratio of the
accuracy value and the loss function, at the training,
validation and testing stages, as well as the time of
one training and validation epoch, the leader is a
model with the parameters: AveragePooling, GRU
and normalized data.

Further, the computer analysis results of the ap-
plication of widely known and used neural network
models AlexNet, LeNet, Inception, Xception, Mo-
bileNet, ResNet, Yolo was carried out for the prob-
lem under consideration. As a basis, we used the
program code from the repository of the series of
online workshops “Machine Learning Tokyo - De-
mocratizing Machine Learning” [29], which was
modified for the task of classifying the TD time se-
ries of the analyzed SS subsystem. The results of
computer experiments, representing the value of ac-
curacy and loss function on the training, validation
and test sets, as well as the time of one training and
validation epoch, are given in Table 4.

Based on the data in Table 4, we can conclude
that the best results in terms of classification accura-
cy values and execution time of one training and
validation epoch were shown by a modified deep
neural network model of the Inception family, de-
veloped by Christian Szegedy and colleagues at
Google [26, 30]. It used the AveragePooling aggre-
gation layer, the LSTM recurrent layer, and data
normalization. There was no significant increase in
the values of accuracy and decrease in the values of
losses at the stages of validation and testing for the
last group of models. At the same time, the time of
one epoch of training and validation has increased
more than 2 times. In addition, the Inception model

has become significantly more complicated in com-
parison with the best-developed model from Table 3.
Therefore, to solve the problem under consideration,
the use of this group of models, unfortunately not
advisable.

CONCLUSION

Neural network models based on modern deep
learning architectures have been developed and in-
vestigated to solve the problem of binary classifica-
tion of telemetry data, which make it possible to de-
termine the normal and abnormal state of function-
ing of the SS navigation subsystem. A computer
analysis was carried out on the real TD, which made
it possible to assess the quality of the developed
models at the stages of training, validation and test-
ing. This analysis showed the advantage of hybrid
neural network models, which are a sequential con-
nection of three blocks of layers: convolutional 1D
CNN, recurrent GRU and the final fully connected
classifier block, using the AveragePooling aggrega-
tion layer, the method of the residual connections
and normalizing the initial data. A similar model
also performed well without residual connections
and input data normalization. In general, when solv-
ing the problem under consideration, an accuracy of
more than 0.96 at the stages of validation and testing
was achieved.

Further research of modern neural network
models for the problem of binary and non-binary
classification of time series, as well as methods for
automating the search for optimal hyperparameters
values of models and their architectures, is promis-

ing.

Table 4. Experimental data of modified neural network models

NN type Training Validation Testing Time of one
Accuracy Loss Accuracy Loss Accuracy Loss tr(;a;;i:r? f;;oﬁ]l,i_
sec
AlexNet 0.9221 0.1772 0.9215 0.1817 0.9228 0.1782 22
LeNet 0.8690 0.3011 0.8669 0.3062 0.8695 0.3072 10
Inception 0.9818 0.0406 0.9694 0.1045 0.9675 0.1154 27
Xception 0.9226 0.1749 0.9252 0.1748 0.9216 0.1755 96
MobileNet 0.9650 0.0776 0.9608 0.0949 0.9597 0.0975 35
ResNet 0.9685 0.0687 0.9656 0.0969 0.9644 0.0924 79
Yolo 0.9359 0.1665 0.9302 0.1815 0.9322 0.1783 37
Source: compiled by the author
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AHOTALIS

V¥ crarTi HafaHO PO3B’SI3aHHS aKTyaIbHOI 3a]adi IHTEIEKTyaIbHOTO aHaJi3y JaHUX TeIeMeTpUIHOI iHpopMamii Manux KocMid-
HUX amnapariB 3 METOIO0 BU3HAUYEHHS IX TEXHIYHHX CTaHiB. Po3pobieHo HefipoMepexeBi MOIeli Ha OCHOBI CY4acHHUX apXiTEKTyp IJIU-
OOKOTO HaBYaHHS JUI BHpIIIEHHS 3amadi GiHapHOI kiacuikamii maHnx TeneMmerpudHOi iH(opMamii, 010 JO3BONISIOTH BH3HAYATH
LITaTHUH Ta NO3AIITATHUH cTaH (PyHKUIOHYBaHHS MaJIMX KOCMIUHHUX amapaTiB abo Aedkux ix migcucreM. [ KOMIT'IOTEpHOTO aHali-
3y BHKOPHCTOBYBAJIMCS NaHI (DYHKI[IOHYBaHHS HaBiramiifHOI HMiJCHCTEMHM MaJIMX KOCMIUHHX anapaTiB, YacOBUH PsI PO3MIPHICTIO
121690%9. ITpoBonuBCS MOPIBHAIIBHUN aHaJi3 MOBHO3B'SI3HUX, OJHOBUMIpHUX 3ropTKoBUX Ta pekypeHTHUX (GRU, LSTM) Heiipon-
HUX MepeX, HSHPOHHUX MOJeNel pi3HOI IMUOKHH, SIKi € TOCTiTOBHUMH KOMOIHAIISIMU BCiX TPHOX THIIIB IIAPiB, Y TOMY YHCH 3 BU-
KOPHCTaHHSM TEXHOJIOTIi J[OJaBaHHS 3aJIMIIKOBHX 3B'SA3KiB cimeiictBa ResNet, mmpoko mommpeHnX HeHpOMepexHuX Mojeneit
AlexNet, LeNet , Inception, Xception, MobileNet, ResNet, Yolo, mo € moaudikoBanumu asis kiacudikaumii qacoBux psiaiB. Haii-
Kpamuil pe3ynbTaT 3 TOYKH 30py TOYHOCTI Kiacu¢ikamii Ha eTarmax HaBUaHHS, BaNifallii, TECTYBaHHS, Ta 9acy BHKOHAHHS OJHi€l
€MOXM HaBUAHHSA Ta BaJlifalil OTpUMaiy po3poOIieHI MOCTiI0BHI HEHpOoMepekeBl MOENI 3 TPHOX TUIIIB IIapiB: OMHOBUMIPHHX 3TOp-
TKOBHX, peKypeHTHOro GRU Ta moBHO3B’s13k0BOTO KnacugikamiifHoro mapis. BxinHi mani 6ymo BHOpMoBaHo. TouHicTs Knacudika-
1ii Ha eTamax HaBYaHHS, Balifalii Ta TecTyBaHHA cKkiaid BiamosinHo: 0.9821, 0.9665, 0.9690. Yac BukoHaHHS OJHI€] €MOXU HaB-
YaHHs Ta BaJijalii CKJIaB IBaHAAILITH CeK. [Ipu 1[bOMYy HalKpalluil albTepHATHBHUI pe3ysbTaT MoKasajia MoAn(ikoBaHA MOJEIb
Inception: 0.9818, 0.9694, 0.9675. Uac BuKOHAHHs OJHI€T €MOXH HABYAHHS Ta BAIIAIlil IUIsI [[i€i MOMEII CKJIAB JBAIISATL CIM CeK.
30iIpIIeHHS TOYHOCTI Kiacugikamii mia gac aganTanii BiTOMHUX HEHpOMEpeKeBUX MOJENEH, sIKi BUKOPUCTOBYIOTBCS IUIA aHAIi3y
300pakeHb, OTPIMaHO He 0yJ10, ale yac HaBYaHHs Ta Bajijgamii y pasi kpamoi Mozeni Inception 30UTbIMBCS OLTBII HIXK Yy ZBa pasu.
Bymu 3anpomnoHoBaHi Ta mpoaHaIi30BaHi TiOpuAHI HEHpOMepeKeBi MOIENi, y TOMY YHCHTi 3 BUKOPUCTAaHHIM METOIMKHU MPOKHIAHHS
3aJIMIIKOBUX 3B'S3KiB ciMelicTBa ResNet. BoHu mokasanu HaiOiIbITy TOYHICTE Ta MiHIMAJIbHUNA YaC HABYAHHS Ta BaJigallii MoJelni y
BUPILICHHI MMOCTABICHOT 3a7a4i MOPIBHAHO 3 HU3KOKO PO3POOJICHUX Ta MIMPOKO BIIOMHUX, 3aCTOCOBYBaHUX TNIMOOKHX HEHpoMepexke-
BUX MOJIETICH.

KnarwuoBi cioBa: HelipoHHI Mepexi; JaHi TeJIeMeTpil; aHami3 JaHUX; MMOBHO3B’SI3KOBI Mepexi/mapu; 1D-3ropTkoBi mepe-
JKi/IIapy; peKypeHTHI Mepexi/mapu
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