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FUNDAMENTAL SOLUTIONS FOR A PIECEWISE-HOMOGENEOUS  
TRANSVERSELY ISOTROPIC ELASTIC SPACE 

О. F. Kryvyi1,2  and  Yu. О. Morozov3 UDC 536.24 

The problem of construction of the fundamental solutions for a piecewise-homogeneous transversely 
isotropic space is reduced to a matrix Riemann problem in the space of slowly increasing distributions. 
We propose a method for the solution of this problem.  As a result, in the explicit form, we obtain ex-
pressions for the components of the vector of fundamental solution and simple representations for the 
components of the stress tensor and the vector of displacements in the plane of joint of transversely iso-
tropic elastic half spaces subjected to the action of concentrated normal and tangential forces.  We study 
the fields of stresses and displacements in the plane of joint of the half spaces.  In particular, for some 
combinations of materials, we present the numerical values of the coefficients of influence of concen-
trated forces on the stresses and displacements.  We also establish conditions under which the normal 
displacements are absent in the plane of joint of transversely isotropic elastic half spaces.   

Keywords: fundamental solutions, matrix Riemann problem, transversely isotropic inhomogeneous 
space, generalized functions. 

The investigation of stress concentration in the vicinity of interface and internal defects, such as cracks or 
inclusions, in thermoelastic fields is of significant practical interest.  Numerous works are devoted to the investi-
gation of this problem in different media.  Thus, in particular, the problems of stationary thermoelasticity for 
bodies containing heat-permeable disk-shaped inclusions whose surfaces are under the conditions of imperfect 
thermal contact and the problems with thin thermally active disk-shaped inclusions were considered in [3–7].  
The analyzed problems were reduced to hypersingular integral equations of the first and second kinds for which 
it is possible to obtain the exact solutions.   

In [2, 9–12, 15, 18], the nonsymmetric problems of elasticity and thermoelasticity for interface stress con-
centrators, such as cracks or rigid inclusions in piecewise-homogeneous transversely isotropic spaces, were re-
duced to systems of two-dimensional singular integral equations (SIE) by the method of singular integral rela-
tions (SIR) [29], and a method for their solution was proposed.  A similar approach was applied in [8, 13, 14, 
20–22] to solve the problems of interface and internal defects in piecewise-homogeneous anisotropic media. 

For the mathematical statement and solution of problems of this kind for defects, it is necessary to impose 
boundary conditions on the defect itself, namely, either the stresses acting on the crack faces or the displace-
ments on the inclusion.  In the physical statement of the problems of evaluation of the fields of stresses and dis-
placements in the vicinity of stress concentrators, the values of stresses or displacements are known on the 
boundary of the domain, at certain internal points, or at infinity (for the unbounded bodies).  Hence, the determi-
nation of the boundary conditions imposed on the defect is a separate problem.  
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Within the framework of the linear theory of elasticity, for the solution of this problem, it is necessary to 
know the distribution of the fields of stresses and displacements in the corresponding piecewise-homogeneous 
bodies without defects in the presence of volume forces.  

In particular, for piecewise-homogeneous isotropic and transversely isotropic spaces, these solutions were 
presented in [33] and [32], respectively.  However, in [32], the solutions have a quite complicated structure.  The 
Green functions for piecewise homogeneous transversely isotropic spaces in the presence of concentrated heat 
sources and in the absence of thermodiffusion were constructed in [24].  In the presence of thermodiffusion, they 
were constructed in  [30].  In [23, 31],  the Green functions were constructed for a layered thermoelastic medi-
um.  

The method of fundamental solutions in the space   ′ℑ (!3)   of generalized tempered functions proves to be 
an efficient method for the solution of the indicated problem.  In particular, in  [16, 17],  the problem of con-
struction of the fundamental solutions for piecewise homogeneous two-dimensional anisotropic media was re-
duced to the matrix Riemann problem for a part of variables in the space   ′ℑ (!3),  and an approach to its solu-
tion was proposed.  In the present work, the indicated approach is generalized for the construction, in the ex-
plicit analytic form, of fundamental solutions in piecewise-homogeneous transversely isotropic space, which 
enables us to study the influence of volume loads on the stresses and displacements in the plane of joint of the 
materials. 

1.  Statement of the Problem 

Assume that the volume forces  P(x, y, z) = (P1, P2, P3)  concentrated in some domains of dimension  n ,  n 
= 0, 1, 2, 3,  act in an inhomogeneous space formed by two different transversely isotropic half spaces complete-
ly joined in the plane  z = 0.  The elastic strained state of the space is described by the following vector: 

 
  
v = {vk (x, y, z)}k=1,…,9 = {σx ,σy ,σz , τyz , τxz , τxy , u, v,w}. (1) 

By using the equilibrium equations and generalized Hooke's law for the components of the vector  v ,  in the 
space of tempered generalized functions   ′ℑ (!3) ,  we get the following boundary-value problem: 

 D [z,∂1,∂2,∂3]v = F ,     v,F∈ ′ℑ (!3). (2) 

 vk (x, y, +0) = vk (x, y, −0) ,       k = 1,…, 9 ,    k ≠ 1, 2, 6 , (3) 

 vk (x, y, x) (x,y,z)→∞ = 0,     k = 1,…, 9 . (4) 

Here, we introduce the following notation: 

 
 

D =
D0 O3×3

−S D0
⊤

,             F
⊤ = −P1, −P2, −P3, 0, 0, 0, 0, 0, 0 ⋅δ(Ω),  
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 S =
S1 O3×3

O3×3 S2
,         D0 =

∂1 0 0 0 ∂3 ∂2
0 ∂2 0 ∂3 0 ∂1
0 0 ∂3 ∂2 ∂1 0

,  

 S1 =
s11 s12 s13
s21 s11 s13
s13 s13 s33

,         S2 =
s44 0 0
0 s44 0
0 0 s66

,  

 ∂1 =
∂
∂x

,  ∂2 = ∂
∂y

,  ∂3 =
∂
∂z

; 

skj = θ(z)skj
+ + θ(−z)skj

− ;  Ω   is the domain of concentration of volume forces;  δ(Ω)  is the characteristic func-

tion of the domain  Ω   from   ′ℑ (!3);  skj
±   are the coefficients of generalized Hooke's law for the upper  z > 0   

and lower  z < 0   half-spaces, respectively, and  O3×3  is the  3× 3 null matrix.    

2.  Construction of the Fundamental Solution 

The components of the vector  v   (1) are represented in the form 

 vk (x, y, z) = wkj
j=1

3

∑ ∗Fj , (5) 

where the functions  
 
wkj (x, y, z)∈ ′ℑ (!3)  are the components of the system of the fundamental solutions  w j  = 

  
{wkj}k=1,…,9 ,  j = 1, 2, 3,  of problem (2)–(4), i.e.,  w j   are the solutions of the system of boundary-value prob-
lems 

 D[z,∂1,∂2,∂3]w j = f 0 ,    
 
w j , f

0 ∈ ′ℑ (!3), (6) 

 wkj (x, y, +0) = wkj (x, y, −0),       k = 1,…, 9 ,    k ≠ 1, 2, 6 , (7) 

 wkj (x, y, x) (x,y,z)→∞ = 0 ,     k = 1,…, 9 , (8) 

where  f 0 = δkjδ(x − x0, y − y0, z − z0 ){ }k=1
9   and  δkj   is the Kronecker delta. 

We represent the components of the vectors  w j   in the form 

 wkj = θ(z)wkj + θ(−z)wkj = w
kj
+ + w

kj
− ,  
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where  
 
wkj
± ∈ ′ℑ (!±

3 )  and   !±
3 = !2 ×!± ,  and apply the operator of three-dimensional Fourier transform  F3   

from   ′ℑ (!3)  to the matrix equation (6).  Thus, by using equalities (7), conditions (8), and the results obtained 
in [7, 13, 14, 16, 17, 19–22], for  

 
 
Wkj

± (α1,α2,α3) = F3[wkj
± ]∈ ′ℑ (!3), 

we obtain the following matrix equation: 

 M+Wj
+ = M−Wj

− + Fj
0 ,      

 
Wj

± , Fj
0 ∈ ′ℑ (!3),    j = 1, 2, 3. (9) 

Here, we have denoted  

 
 
Wj

± = {Wkj
±}k=1

9 ,      M± = D[± 0, −iα1,− iα2, −iα3],       Fj
0 = {δkje0}k=1

9 ,  

where  e0 = exp (iα1x0 + iα2y0 + iα3z0 ).  

The functions  
 
wkj
± ∈ ′ℑ (!±

3 )  admit an analytic representation [7, 13, 14, 16] with respect to the variable  α3  
and, therefore, Eq. (9) is the boundary condition of the matrix Riemann problem in the variable  α3.  

By using the properties of generalized functions applying using the methods proposed in [7, 13, 14, 16, 17, 
19–22], we represent the boundary conditions (9) in the form  

 M±Wj
± = Fj

± ,      
 
Wj

± , Fj
± ∈ ′ℑ (!3) ,    j = 1, 2, 3, (10) 

where  

 
  
Fj
± = { fkj

±}k=1,…,9 ,      
 
fkj
± = θ(± z0 ) e0δkj ∓

1
2
χk ,  

   χχ = {χk}k=1,…,9 ∈ ′ℑ (!2 ) ,      χk = 0,    k = 4, 5, 9 ,  

χk (α1,α2 )   are unknown functions from   ′ℑ (!2 ).  In order to determine these functions, we use the Fourier 
transforms of conditions (7).  

The unknown functions are represented in the form 

 W7 j
± = − (− iα2 )Ψ1 j

± − (− iα1)Ψ2 j
± ,      W8 j

± = (− iα1)Ψ1 j
± − (− iα2 )Ψ2 j

± , (11) 

 W5 j
± = − (− iα2 )T1 j

± − (− iα1)T2 j
± ,      W4 j

± = (− iα1)T1 j
± − (− iα2 )T2 j

± , (12) 

where  Ψkj
±   and  Tkj

±,  k = 1, 2 ,  are new unknown functions.  Then the matrix equation (10) can be split into two 
independent equations  



FUNDAMENTAL SOLUTIONS FOR A PIECEWISE-HOMOGENEOUS TRANSVERSELY ISOTROPIC ELASTIC SPACE 147 

 

 L±U j
± = Fj1

± ,     and      G±Vj
± = Fj2

± . (13) 

Here, we have introduced the following notation: 

 
 
U j
± = {Ukj

±}k=1,2 = {T1 j± ,Ψ1 j
± },      

 
Vj
± = {Vkj±}k=1,4 = {W3 j

± ,T2 j
± ,Ψ2 j

± ,W9 j
± },  

 
 
Fj1
± = {(− iα2 ) f1 j

± − (− iα1) f2 j
± , (− iα2 ) f7 j

± − (− iα1) f8 j
± },  

 
 
Fj2
± = { f3 j

± , (− iα1) f1 j
± + (− iα2 ) f2 j

± , (− iα2 ) f8 j
± + (− iα1) f7 j

± , f6 j
± },  

 
  
G± = {gkj

± }k, j=1,…,4 ,      g11
± = g44

± = (−iα3) ,      g12
± = r2 ,  

 g22
± = g33

± = (− iα3)r
2 ,      gkj

± = gjk
± = 0 ,      k = 1, 2 ,    j = 3, 4 ,  

 g21
± = − c13

±

c33
± g12

± ,      g23
± = − c13

± + c13
± 2

c33
± r4 ,      g32

± = − 1
c44
± g12

± ,  

 g34
± = − g12

± ,      g41
± = − 1

c33
± ,      g43

± = c13
±

c33
± g12

± ,  

 
  
L± = {ℓ kj

± }k, j=1,2,       ℓ11
± = (− iα3)r

−2 ,       ℓ 22
± = (− iα3)r

2 ,  

 
 
ℓ 21
± = − r2

c44
± ,       ℓ 21

± = −c66r
4 ,      r2 = α1

2 + α2
2 .  

Directly from Eqs. (13), we obtain  U j
± = L±

−1Fj1
±   and  Vj

± = G±
−1Fj2

± ,  where  
  
L±
−1 = {ℓ kj

∗,±}k, j=1,2   and  

  
G±

−1 = {gkj
∗,±}i, j=1,…,4 .  Further, by using representations (11) and (12), as a result of the inverse Fourier trans-

formation, we represent the components of the vectors  
 
u j
± = {ukj

± }k=1,2 = F3
−1[U j

± ]  and  v j
±  = 

  
{vkj

± }k=1,…,4  = 

F3
−1[Vj

± ],  j = 1, 2 ,  in the following form: 

 
  

ukj = ϑ1 j
Sk1(r02 + (ξ0 z − z0 )2)(2−k )/2

ξ0 z − z0 + r0
2 +(ξ0 z − z0 )2

⎧
⎨
⎪

⎩⎪
  

  + 
   

!βk(r02 +(
⌢
ξ0z +

⌣
ξ0z0)2)(2−k )/2⌢

ξ0 z +
⌣
ξ0 z0 + r0

2 +(
⌢
ξ0z +

⌣
ξ0z0)2

⎫
⎬
⎪

⎭⎪
,    k = 1, 2 ,  
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v1 j = −ϑ2 j

R1,2,n

(r02 + (ξn z − z0 )2)3/2n=1

2

∑ +
β1,n,m
2

(r02 +(
⌢
ξnz +

⌣
ξmz0)2)3 2

n,m=1

2

∑ ,  

 
  
vkj = ϑ2 j

−Rk,2,n(r02 +(ξn z − z0
2))−1/2

z − z0 ξn
+ + r0

2 + (ξn z − z0 )2
⎧
⎨
⎪

⎩⎪n,m=1

2

∑   

  + 
   

βk,n,m
2 (r02 +(

⌢
ξnz +

⌣
ξmz0)2)−1/2

⌢
ξn z +

⌣
ξm z0 + r0

2 +(
⌢
ξnz +

⌣
ξmz0)2

⎫
⎬
⎪

⎭⎪
,    k = 2, 4 ,  

 
 

v3 j = ϑ2 j
− R3,2,n

z − z0 ξn
+ + r0

2 +(ξn z − z0 )2
⎧
⎨
⎪

⎩⎪n,m=1

2

∑   

  + 
  

β3,n,m
2

⌢
ξn z +

⌣
ξm z0 + r0

2 +(
⌢
ξnz +

⌣
ξmz0)2

⎫
⎬
⎪

⎭⎪
,  

 
   
v13 = − z − z0

⌢
Rn

(r02 + (ξn z − z0 )2)3/2n=1

2

∑ +
z
⌢
βn,m + z0

⌣
βn,m

(r02 +(
⌢
ξnz +

⌣
ξmz0)2)3/2n,m=1

2

∑ ,  

 
   
vk3 = −

Rk,1,n
(r02 + (ξn z − z0 )2)1/2n=1

2

∑ +
βk,n,m
1

(r02 +(
⌢
ξnz +

⌣
ξmz0)2)1/2n,m=1

2

∑ ,    k = 2, 4 ,  

 v33 = R3,1,n ln c
2
+ ln z − z0 ξn + r0

2 + (ξm z − z0 )2( )⎛
⎝

⎞
⎠

n=1

2

∑   

  – 
  

β3,n,m
1 ln c

2
+ ln

⌢
ξm z +

⌣
ξm z0 + r0

2 +(
⌢
ξnz +

⌣
ξmz0)2( )⎛

⎝
⎞
⎠

n,m=1

2

∑ .  

Here, we have introduced the following notation:  

 ϑ1 j = (y − y0 )
2− j

(x − x0 )
1− j ,      ϑ2 j = (x − x0 )

2− j

(y − y0 )
1− j ,      

  
Spk
± =

!ℓ pk
± (ξ0 )
2ξ0

,  

 Spk = θ(z, z0 )Spk
− + θ(−z, −z0 )Spk

+ ,      p, k = 1, 2 ,        
!ℓ11
± = !ℓ22

± = ± ξ0 ,      
  

!ℓ21
± = − 1

c44
± ,  

   
!ℓ12
± = − c66

± ,       
⌢
Rn = θ(z, z0 )

⌢
Rn
+ + θ(−z, −z0 )

⌢
Rn
− ,       

⌢
Rn
± = ξn

±R1,1,n
∗,∓ ,  
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!β p = − θ(z, z0 ) !β p

++ + θ(z, −z0 ) !β p
+− + θ(−z, z0 ) !β p

−+ − θ(−z, −z0 ) !β p
+− ,    p = 1, 2 ,  

  
⌢
βn,m = − θ(z, z0 )

⌢
βn,m
++ + θ(z, −z0 )

⌢
βn,m
+− + θ(−z, z0 )

⌢
βn,m
−+ − θ(−z, −z0 )

⌢
βn,m
−− ,  

  
⌣
βn,m = − θ(z, z0 )

⌣
βn,m
++ + θ(z, −z0 )

⌣
βn,m
+− + θ(−z, z0 )

⌣
βn,m
−+ − θ(−z, −z0 )

⌣
βn,m
−− ,  

 βk,n,m
p = − θ(z, z0 )βk,n,m

p,++ + θ(z, −z0 )βk,n,m
p,+− + θ(−z, z0 )βk,n,m

p,−+ − θ(−z, −z0 )βk,n,m
p,−− ,  

 p = 1, 2 ,  

   
⌢
βn,m
+± = ξn

+β1,n,m
1,+± ,       

⌣
βn,m
+± = ξm

±β1,n,m
1,+± ,       

⌢
βn,m
−∓ = ξn

∓β1,n,m
1,−∓ ,       

⌣
βn,m
−∓ = ξm

− β1,n,m
1,−∓ ,  

  
⌢
ξn = θ(z, z0 )ξn

+ + θ(z, −z0 )ξn
+ + θ(−z, z0 )ξn

− − θ(−z, −z0 )ξn
− ,    n = 0,1, 2 ,  

  
⌣
ξm = θ(z, z0 )ξm

+ − θ(z, −z0 )ξm
− − θ(−z, z0 )ξm

+ + θ(−z, −z0 )ξm
− ,    m = 0,1, 2,  

 Rk, p,n = θ(z, z0 )Rk, p,n
∗,− + θ(−z, −z0 )Rk, p,n

∗,+ ,      k = 2, 3, 4 ,    p = 1, 2 ,  

 
 
!α p
+ = !apk

∗ Sk1
+

k=1

2

∑ ,      
 
!α p
− = !apk

∗ Sk1
−

k=1

2

∑ ,      
 

!β p
+± = Spk

+ αk
±

k=1

2

∑ ,      
 

!β p
−± = Spk

− αk
−

k=1

2

∑ ,  

 
  
!A0
−1 = { !akj

∗ },       
!A0 = H+ − H− ,      

 
H± = ±{Skp

± }k, p=1,2,      
  
A0

−1 = {akj
∗ }k, j=1,…,4 ,  

 A0 = N+ − N−,      
  
N± = ±{Rk, p

± }k, p=1,…,4 ,      Rp,k
± = Rp,k,n

∗,±

n=1

2

∑ ,      ξ0
± = c66

±

c44
± ,  

 
 
Rp,k,n
∗,± =

!gpk
± (ξn )

2ξn (ξ3−n + ξn)(ξn − ξ3−n)
,      

 

αℓ,n
p,+ = aℓj

∗ Rj, p,n
∗,−

j=1

4

∑ ,      α4,n
p,− = a4 j

∗ Rj, p,n
∗,+

j=1

4

∑ ,  

 
 
βℓ,n,m
p,+± = Rℓ,k,n

∗,+

k=1

4

∑ αk,m
p,± ,      

 
βℓ,n,m
p,−± = Rℓ,k,n

∗,−

k=1

4

∑ αk,m
p,± ,      ξ0 = θ(z0 )ξ0

+ + θ(−z0 )ξ0
− ,  

 
 
!g11
± (ξn) = !g44

± (ξn) = ∓ ξn −c34ξn
2 + c13 − c13

2 − c13c44( ),    c34 = c33c44 ,  

 c13 = c11c33,      ξn = θ(z)ξn
+ + θ(−z)ξn

− ,      
 
!g12
± (ξn ) = − c33ξn + c13

2( ) c44 ,  
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!g34
± (ξn) = c33ξn

2+ c13
2( ) c44 ,       !g41

± (ξn) = c44ξn
2 − c11,      

 
!g42
± (ξn) = ∓ c13

2 + c44( ) ξn ,  

 
 
!g31
± (ξn) = ± c13

2 + c44( ) ξn ,       !g32
± (ξn) = c33ξn

2 − c44 ,      
 
!g23
± (ξn) = c13 − c13

2( ) c44ξn2 ,  

 
 
!g14
± (ξn) = − c13 − c13

2( ) c44 ,      
 
!g22
± (ξn ) = !g33

± (ξn ) = ± c33ξn
2 + c13

2( ) c44ξn ,  

 
 
!gk,k+2
± (ξn ) = ∓ (−1)k c13 − c13

2( ) c44ξn ,  

 
 
!g2k,2k−1
± (ξn) = (−1)k−1 c13ξn

2 + c11( ) c44 ,     k = 1, 2,      ckj = θ(z)ckj
+ + θ(−z)ckj

− ,  

 c33
± c44

± (ξk
± )4 + c13

± c13
± + 2c44

±( )− c11
± c33

±⎡⎣ ⎤⎦ (ξk
± )2 + c11

± c44
± = 0,    k = 1, 2.  

3.  Fields of Stresses and Displacements in the Plane of Joint of the Half Spaces 

Setting  z = 0  in the fundamental solutions, we get the distributions of normal and tangential stresses and 
displacements in the plane of joint of the half spaces in the case where a concentrated force  P = (P1, P2, P3)   
(Pk ≥ 0),  acts at an arbitrary point  M0 = (x0, y0, z0 ) .  In particular, if the force  P  acts only in the direction of 
the X -axis,  P = (P1, 0, 0) ,  or of the Y -axis,  P = (0, P2, 0) ,  then we get  ( j = 1, 2):  

 

 

σz = Pj B1,n
ϑ2 j z0

r0
2 + (ξnz0 )

2( )3/2n=1

2

∑ ,  

 
  
τyz = − Pj −∂1

ϑ1 j (−1)
3− j(r02 + (ξz0 )

2)−1/2S1
ξ z0 + r0

2 + (ξz0 )
2

⎧
⎨
⎪

⎩⎪
  

  + 
  
∂2

ϑ2 jB2,n(r02 + (ξnz0 )
2)−1/2

ξn z0 + r0
2 + (ξnz0 )

2
n=1

2

∑
⎫
⎬
⎪

⎭⎪
,  

 
  
τxz = − Pj ∂2

ϑ1 j (−1)
j S1(r02 + (ξz0 )

2)−1/2

ξ z0 + r0
2 + (ξz0 )

2

⎧
⎨
⎪

⎩⎪
  

  + 
  
∂1

ϑ2 jB2,n(r02 + (ξnz0 )
2)−1/2

ξn z0 + r0
2 + (ξnz0 )

2
n=1

2

∑
⎫
⎬
⎪

⎭⎪
,  
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 u = − Pj −∂2
S2ϑ1 j

ξ z0 + r0
2 + (ξz0 )

2
+ ∂1

B3,nϑ2 j

ξn z0 + r0
2 + (ξnz0 )

2
n=1

2

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  

 v = − Pj −∂1
S2ϑ1 j

ξ z0 + r0
2 + (ξz0 )

2
+ ∂2

B3,nϑ2 j

ξn z0 + r0
2 + (ξnz0 )

2
n=1

2

∑
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
,  

 w = Pj
B4,nϑ2 j

r0
2 + (ξnz0 )

2 ξn z0 + r0
2 + (ξnz0 )

2( )n=1

2

∑ .  

If the force  P  acts only in the direction of the Z -axis,  P = (0, 0, P3),  then we get 

 
  
σz = − P3

A1,nz0
(r02 + (ξnz0 )

2)3/2n=1

2

∑ ,  

 
  
τxz = P3

A2,n (x − x0 )
(r02 + (ξnz0 )

2)3/2n=1

2

∑ ,        
  
τyz = P3

A2,n (y − y0 )
(r02 + (ξnz0 )

2)3/2n=1

2

∑ ,  

 u = P3
A3,n (x − x0 )

r0
2 + (ξnz0 )

2 ξn z0 + r0
2 + (ξnz0 )

2( )n=1

2

∑ ,  (14) 

 v = P3
A3,n (y − y0 )

r0
2 + (ξnz0 )

2 ξn z0 + r0
2 + (ξnz0 )

2( )n=1

2

∑ ,  

 w = − P3
A4,n

r0
2 + (ξnz0 )

2
n=1

2

∑ , 

where  

 Sp = θ(z0 )Sp1
+ + θ(−z0 )Sp1

− ,      Ap,n = θ(z0 )Ap,n
+ + θ(−z0 )Ap,n

− ,      p = 1, 2 ,  

 Bp,n = θ(z0 )Bp,n
+ + θ(−z0 )Bp,n

− ,       A1,n
+ = −

⌢
Rn
+ +
⌢
βn
++ ,       A1,n

− = −
⌣
βn
+− ,  

 
 

⌢
βn
±± =

⌢
βm,n
±±

m=1

2

∑ ,      
 

⌣
βn
±∓ =

⌣
βm,n
±∓

m=1

2

∑ ,      β p,k,n
±± = βk,m,n

p,±±

m=1

2

∑ ,  
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β p,k,n
±∓ = βk,m,n

p,±∓

m=1

2

∑ ,      Ak,n
+ = − Rk,1,n

− + β1,k,n
++ ,      Ak,n

− = − β1,k,n
+− ,    k = 2, 3, 4 ,  

 Bk,n
+ = − Rk,2,n

+ + β2,k,n
++ ,      Bk,n

− = − β2,k,n
+− ,     k = 1,…, 4 .  

In Tables 1 and 2, we present the values of the coefficients of influence  Ap,n
±   from representations (14) for 

some combinations of transversely isotropic materials [1];  in particular, for the ceramics А (ВаТіО3;   material 
m1),  for the ceramics В  (ВаТіО3 + 5%СаTiO3; material m2), for yttrium (material m3), for magnesium (mate-
rial m4), for beryl (material m5); for cobalt (material m6); for beryllium (material m7), and for zinc (material 
m8).   

Table 1.  Values of the Coefficient  Ap,n
++ ,  n == 1, 2   

Combination of 
materials 

 A1,n
+    A2,n

+    A3,n
+ ⋅10−11   A4,n

+ ⋅10−11  

m1–m2 0.365 | –0.72 –0.470 | 0.566 –0.543 | 0.541 0.354 | –0.842 

m3–m2 0.061 | –0.182 –0.094 | 0.121 –0.113 | 0.103 0.053 | –0.222 

m5–m2 –0.456 ± i0.488 0.142 ∓ i0.657 0.025 ∓ i0.765 –0.621 ± i0.462 

m3–m4 0.095 | –0.26 –0.132 | 0.191 –0.413 | 0.4574 0.233 | –0.799 

m6–m5 0.524 | –2.43 –0.864 | 1.65 –0.914 | 1.09 0.368 | –2.787 

m1–m8 0.561 | –1.062 –0.900 | 1.117 –1.223 | 1.267 0.990 | –2.278 

m3–m8 0.103 | –0.288 –0.184 | 0.252 –0.258 | 0.252 0.169 | –0.654 

m6–m2 0.490 | –2.345 –0.800 | 1.487 –0.970 | 1.24 0.408 | –2.887 

m8–m4  –0.105 ± i0.121 0.028 ∓ i0.147 0.0267 ∓ i0.448 –0.373 ± i0.302 

If the force  P  is located on the Z -axis, i.e.,   

 P = (0, 0, P3),   

then we can write representation (14) in the form 

 σz = − P3
A10
z0
2 ,      τxz = P3

A20x
z0
3 ,      τyz = P3

A20y
z0
3 , (15) 
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Table 2.  Values of the Coefficient  Ap,n
−− ,  n == 1, 2   

Combinations of 
materials  A1,n

−    A2,n
−    A3,n

− ⋅10−11   A4,n
− ⋅10−11  

m1–m2 0.195 ∓ i0.875 0.0549 ∓ i0.9 –0.001 ± i1.01 –0.281 ± i0.977 

m3–m2 0.142 ∓ i0.694 0.0564 ∓ i0.71 –0.02 ∓ i1.362 –0.36 ± i1.321 

m5–m2 0.406 ∓ i1.831 0.122 ∓ i1.952 0.022 ± i1.768 –0.535 ± i1.774 

m3–m4 –0.062 | 0.178 –0.09 | 0.123 0.201 | –1.77 0.09 | –0.398 

m6–m5 0.6 ∓ i0.586  0.135 ∓ i0.811 0.03 ± i0.515 –0.414 ± i0.248 

m1–m8 0.156 ∓ i0.156 0.038 ∓ i0.227 0.007 ± i0.282 –0.227 ± i0.147 

m3–m8 0.123 ∓ i0.139 0.044 ∓ i0.178 –0.004 ± i0.38 –0.318 ± i0.287 

m6–m2 0.525 ∓ i2.2 0.101 ∓ i2.2 0.0394 ± i1.258 –0.366 ± i1.127 

m8–m4  –0.057 | 0.173 –0.105 | 0.137 0.148 | –0.126 0.0923 | –0.0402 

 u = P3
A30x
z0
2 ,      v = P3

A3
0y
z0
2 ,      w = − P3

A40
z0

, (16) 

where 

 Ak0 =
Ak,n
ξn
3

n=1

2

∑ ,    k = 1, 2,      A30 =
A3,n

2ξn
2

n=1

2

∑ ,      A40 =
A4,n
ξnn=1

2

∑ .  

Suppose that two oppositely directed concentrated forces   

 P± = (0, 0, ±P3
± )   

act along the Z -axis in different half spaces at the points  M ± 0, 0, z0
±( ),  respectively.  In this case, it is possible 

to represent normal displacements for  z = 0   in the following form:  

 w = − P3
+A40

+ 1
z0
+ + P3

−A40
− 1

z0
− .  

This enables us to determine the condition under which normal displacements  w  in the plane of joint of the half 



154 О. F. KRYVYI  AND  YU. О. MOROZOV 

 

spaces are equal to zero 

 P3
+

P3
−

z0
−

z0
+ = κ0 ,         κ0 = A40

−

A40
+ . (17) 

In Table 3, we present the values of the coefficient  κ0   for some combinations of the materials. 

Table 3.  Values of the Coefficient  κκ0   

Combinations of materials m1–m2 m5–m2 m8–m4 m3–m8 m3–m4 

κ0  0.9159 0.90887 1.4720 1.246 1.81397 

Conclusions  

In the present work, we obtain, in a simple explicit form, fundamental solutions for a piecewise-homo-
geneous transversely isotropic space, which enable us to determine the conditions imposed on interface de-
fects in the presence of volume loads.  The loads may be applied both over the volume and over the surfaces 
of measure zero in the three-dimensional space.  In particular, we obtain simple dependences of stresses and 
displacements in the plane of joint of the half spaces on the values of concentrated forces acting at arbitrary 
points of the space.  It is established that,  unlike the case of an isotropic piecewise homogeneous space,  un-
der the conditions of symmetric normal loading in the plane of joint of the half spaces, we observe the for-
mation of strains.  We establish conditions (17) under which strains are absent in the plane of joint of the half 
spaces.   

The obtained results are of independent interest and make it possible to improve the formulation of prob-
lems posed for interface defects. 
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