
Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

74

Computer systems and cybersecurity ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.06.2023.6

UDC 004.383

Decompressor for hardware applications

Vitalii O. Romankevych1)

ORCID: https://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Ivan V. Mozghovyi1)

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com.

Pavlo A. Serhiienko1)

ORCID: https://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

Lefteris Zacharioudakis2)
ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cytanet.com.cy.

 1) National Technical University of Ukraine “Igor Sikorsky Kyiv Politechnic Institute”, 37, Peremogy Аve. Kyiv, 03056, Ukraine
2) Neapolis University Pafos, 2, Danais Ave. Paphos, 8042, Cyprus

ANNOTATION

The use of lossless compression in the application specific computers provides such advantages as minimized amount of

memory, increased bandwidth of interfaces, reduced energy consumption, and improved self-testing systems. The article discusses

known algorithms of lossless compression with the aim of choosing the most suitable one for implementation in a hardware-software

decompressor. Among them, the Lempel-Ziv-Welch (LZW) algorithm makes it possible to perform the associative memory of the

decompressor dictionary in the simplest way by using the sequential reading the symbols of the decompressed word. The analysis of

the existing hardware implementations of the decompressors showed that the main goal in their development was to increase the

bandwidth at the expense of increasing hardware costs and limited functionality. It is proposed to implement the LZW decompressor

in a hardware module based on a microprocessor core with a specialized instruction set. For this, a processor core with a stack

architecture was selected, which is developed by the authors for the tasks of the file grammar analyzing. Additional memory block

for the dictionary storing and an input buffer which converts the byte stream of the packed file into a sequence of unpacked codes are

added to it. The processor core instruction set is adjusted to both speed up decompression and reduce hardware costs. The

decompressor is described by the Very high-speed integral circuit Hardware Description Language and is implemented in a field

programable gate array (FPGA). At a clock frequency of up to two hundred megahertz, the average throughput of the decompressor

is more than ten megabytes per second. Because of the hardware and software implementation, an LZW decompressor is developed,

which has approximately the same hardware costs as that of the hardware decompressor and has a lower bandwidth at the costs of

flexibility, multifunctionality, which is provided by the processor core software. In particular, a decompressor of the Graphic

Interchange Format files is implemented on the basis of this device in FPGA for the application of dynamic visualization of patterns

on the embedded system display.

Keywords: lossless compression; field programable gate array; hardware-software co-design; intellectual property core
Copyright © Odessa National Polytechnic University, 2023. All rights reserved.

For citation: Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. “Decompressor for hardware applications”. Applied

Aspects of Information Technology. 2023; Vol. 6 No.1: 74–83. DOI: https://doi.org/10.15276/aait.06.2023.6

INTRODUCTION

It is necessary to solve such contradictional

problems as hardware minimization, energy

consumption, and performance optimization when

developing the embedded digital systems. The

compression of information makes it possible to re-

duce the volume of storage devices in this situation.

It can also increase the bandwidth of data

transmission channels, but also minimize power

consumption.

For this purpose, the lossless data compression

application specific hardware should be used [3].

Such minimization is achieved by reducing the

intensity of data exchanges, especially between

remote transmitters and receivers [1]. For example,

© Romankevych V., Mozghovyi I., Serhiienko P.,

 Zacharioudakis Lefteris, 2023

the data exchanges between the processor and

memory during the execution of programs can

consume up to 75 % of the energy consumed due to

the wire heating and high-current buffer switching

[2]. Therefore, storing data and programs in a

compressed form and decompressing them in real

time is effective due to reducing the memory

volume, speeding up data loading and reducing

power consumption.Consider the compression of

programs and data which are loaded into the internal

memory of the microcontroller of the Internet of

Things module. This makes it possible to almost

halve the power consumption of this module with

insignificant overhead costs for the decompression

implementation [4]. Likewise, the compression of

the bit stream for the field programable gate array

(FPGA) speeds up its loading [5].

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0)

https://doi.org/#_blank

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 75

If the decompressor is performed as an

application specific module, its capabilities are

greatly expanded. For example, a data decompressor

is now an integral part of ultra-high-resolution

displays. Then, it becomes possible to transfer large

volumes of data through the display interface [6, 7].

The decompressor of the test data, if it has low

hardware costs, significantly increases the efficiency

of self-diagnosis systems [8] and diagnostics of

complex systems [9] by reducing the volume of

stored test data.

In the application specific systems for modeling

and management of complex objects, the hardware

generators of graphic elements are used, which are

displayed on the screen in real time [10, 11].

However, implementing real-time rendering of these

elements requires significant computational

overhead using a graphics accelerator and often has

excessive hidden latency. In addition, the

development of programs that generate such images

is time-consuming. Therefore, the use of a

decompressor in the GIF format, in which the LZW

algorithm is implemented, makes it possible to

implement such hardware generators of various

dynamic graphic elements for display on the screen

in real time. These can be, for example, images of

measuring devices, such as arrow indicators or

patterns of the object position in space [12].

The decompressing files in the LZW standard

using hardware-software module is proposed in this

article. At the same time, the proper decompression

speed is ensured by the implementation of the

decompressor in a processor core with a specialized

architecture, which is configured in FPGA.

ALGORITHMS AND TOOLS FOR

DECOMPRESSION

The overall goal of data compression is to

reduce the number of bits needed to represent

information. The lossless compression means that

the original data can be accurately reproduced by the

decompressor. In this way, it is possible to compress

software code, digital input data, medical data, text

and other content that is sensitive to distortion.

During Huffman compression, the unique code

words are assigned to a bit sequence, the length of

which is inversely proportional to the frequency of

such lines [13]. A more complex but slower method

of arithmetic coding gives a slightly higher

compression ratio , which is the ratio of file lengths

before and after compression. Both methods require

statistical analysis of the processed data [14].

Methods based on a dynamically generated

dictionary are suitable for data compression without

prior analysis. Thus, the LZ77 algorithm uses a

dictionary buffer and a preview buffer [15]. The

longest line in the preview buffer that matches a line

from the dictionary buffer is converted to a code that

is the index of the dictionary buffer. However, it is

not suitable for hardware implementation because

the dictionary buffer and preview buffer sizes are

too large for hardware implementation. The LZRW3

algorithm is a variant of the LZ77 algorithm, in

which the length of lines in the dictionary is

significantly limited, and the search in it is

accelerated using a hash table. Thanks to this, it has

become widespread in FPGAs and its

implementation provides a throughput of up to 180

MB/s at a clock frequency of 220 MHz [16].

The LZ77 algorithm together with Huffman

coding is used in the Deflate method and is widely

used in hardware decompressors of GZIP files [17, 18].

The LZ78 algorithm creates a dictionary table

and finds in it the longest line corresponding to the

input line [19]. If there is no string matching the

input in the dictionary table, the index of the

recognized string, which is one character shorter,

and the last character of this string are outputted.

The LZW algorithm is a variant of the LZ78

algorithm, which outputs only the index of the

corresponding row of the dictionary table in a

compressed file [20]. In addition, the length of the

string replaced by the index reaches several hundred

bytes, due to which the compression of images with

a uniform background is achieved more than ten

times. The work [21] shows that the LZW algorithm

is not inferior to the Deflate method when compres-

sing images with eight-bit pixels into TIFF files.

According to LZ77, LZ78 algorithms, the de-

compression complexity is much lower than the co-

mpression one due to the fact that the reproduction

of the dictionary and the search in it are performed

much easier by the decompression. Because of this,

the LZW algorithm is common in systems where

decompression occurs more often than compression,

for example, when decompressing the GIF files.

Therefore, this algorithm is chosen for

implementation.

There are several implementations of the LZW

decompressor in FPGA, among them the decom-

pressor [22] uses fixed-length words and one

dictionary table and achieves a maximum

decompression speed of 160 MB/s at a clock

frequency of 50 MHz. The decompressor [23] has

the highest bandwidth of 280 MB/s at a clock

frequency of 300 MHz. This speed is achieved due

to the parallelization of the processes of creating the

dictionary, reading a line from it, and forming the

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

76

Computer systems and cybersecurity

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

output sequence, as well as an increased number of

memory blocks.

Table 1 shows a comparison the decompressor

parameters executing the LZ77, Deflate and LZW

algorithms when they are implemented in FPGA.

Here, hardware costs are expressed in the number of

look-up tables (LUTs) which are the main elements

of FPGA, as well as built-in two-port memory

blocks (BRAMs), which have a volume of 18kB.

Such a comparison makes it possible to conclude

that the decompressors with the LZW algorithm

have a gain in the used hardware volume, and the

ratio of hardware volume per unit of bandwidth is

more than seven times higher. It also requires a

smaller amount of RAM in comparison with

decompressors that other algorithms perform.

Table 1. Parameters of some decompressors given

in the references

Parameter Reference

[24] [17] [18] [23]

Algorithm LZ77 Deflate Deflate LZW

Hardware

volume, LUTs

56000 3362 15691 307

BRAMs 50 16 30 13

Throughput,

MB/s

7200 5.4 97.4 280

Hardware

volume per unit

of bandwidth,

LUTs/MB/s

7.8 623 161 1.1

Source: compiled by the authors

It is worth mentioning that the LZW algorithm

was not widely used among scientists, programmers

and engineers for decades due to the fact that it was

patented and intellectual property rights prevented

its implementation [21]. Moreover, the patent holder

Unisys defended its rights to use the LZW

algorithm, especially in hardware devices. Now the

patent has expired and conditions have appeared to

consider this algorithm in more detail and implement

it more widely.

In many cases, the extreme decompressor

bandwidth is not required, as in the examples in the

introduction. But at the same time, the speed of

software decompression may not be sufficient or the

necessary time resources of the central processor are

spent during its execution. Therefore, this article

considers the idea of implementing LZW

decompression in an application specific compact

processor core, the architecture of which is

configured for labor-intensive algorithm operations.

At the same time, such a processor core, in addition

to decompression, is capable of performing other

algorithms, for example, decompressing GIF files,

implementing data exchange protocols, and

organizing system testing.

PURPOSE AND OBJECTIVES OF THE

RESEARCH

The purpose of this research is to develop a

hardware-software decompressor that performs the

lossless LZW algorithm, which, comparing to the

hardware decompressor, has the same hardware

volume but is able to perform many other algorithms

and has the property of reconfiguration.

To achieve this goal, the following tasks are

performed in this work:

1. Analysis of the LZW decompression

algorithm in order to determine the operations that

should be performed in hardware and software.

2. Research and modification of the architecture

of the microprocessor core configured in FPGA with

the correction of its instruction set and the addition

of hardware blocks that accelerate decompression.

3. Creating a VHDL model of a hardware-

software decompressor, programming its processor

core, configuring it into FPGA and determining the

parameters of the resulting decompressor module.

Comparison of the new decompressor with existing

samples.

4. Analysis of the possibilities of a new

decompressor implementation.

LZW DECOMPRESSION

The LZW decompression algorithm is

described by the following program text:

i = 0;

while (yi 257){

 if (yi = 256) InitT(С);

 if(yi C){

Out(C(yi)); //a string is read from

dictionary.

AddT(C(yi−1) + C1(yi)); // a string is

 //added to dictionary

yi−1 = yi ; //pointer of yi is stored

}

else {

 Out(C(yi−1) + C1(yi−1));

 AddT(C(yi−1) + C1(yi−1));

}

 i++;

 }

}

http://aait.ccs.od.ua/index.php/journal/theme4

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 77

Here, Y = y0, y1, …, ym−1 is the input sequence of

codes from the compressed file,

X = x0, x1, …, xn−1 is the uncompressed string

forming the output file, the characters of which are

selected from an alphabet of k characters

α0, α1,…, αk-1,

C1(yi) is the first character of the string, which

is encoded by the code yi,

 Out(C(yi)) – the function of adding the word

C(yi) from the dictionary to the output file,

AddT() is the function of adding a new word to

the dictionary,

«+» is the concatenation operation,

InitT(С) — is the initialization function of the

dictionary C, which forms the rows of alphabet

symbols in the table C, the rest of the rows are

empty, and the index field of the previous symbol is

zero.

As a rule, k = 256. For example, if the index AB

is 264, then C (264) = AB. Consider the codes

0 – 255 are the character codes of the ASCII table.

The code 256 is the command to clear the

dictionary, and code 257 is the end-of-compressed

code.

Consider an example of a compressed file in the

form of the sequence 256, 66, 65, 95, 258, 258, 95,

65, 261, 257. The step-by-step process of unpacking

this sequence is shown in Table 2.

Table 2. Eexample of decompressing a file using

the LZW algorithm

yi yi-1 Dictio-

nary

reading

Dictionary

writing

Decompressor

output

256 Clearing

66 256 B B

65 66 A 258->BA BA

95 65 _ 259->A_ BA_

258 95 BA 260->_B BA_BA

258 258 BA 261->BAB BA_BABA

95 258 _ 262->BA_ BA_BABA_

65 95 A 263->_A BA_BABA_A

261 65 BAB 264->AB BA_BABA_

ABAB

257 261 (eof) End BA_BABA_

ABAB(eof)
Source: compiled by the authors

The length of strings in a C dictionary is

variable and can reach hundreds of characters.

Therefore, it is impractical to implement the

dictionary in a hardware decompressor in the form

of a random-access memory (RAM) device, the

word of which has a length of this order. Because of

this, in all known hardware decompressors, this

dictionary is implemented as a list.

The Fig. 1 illustrates the contents of the

dictionary RAM, which has an address-index i, the

field P(i) of the pointer to the previous character of

the line and the field C(i) of the next character of the

string.

According to the example in the Table 1,

consider the code-index 261 is inputted to the

dictionary input. Then the last symbol of line B and

the index of the previous symbol 258 are selected

from RAM, after that the symbol A of the string and

the index of the first symbol B are selected. The first

symbol B is selected last. At the same time, the

formation of the next word AB in the dictionary

consists in writing in the table at index 264 the

symbol B and the index of symbol A, which is the

input code yi−1 that is delayed for one period of the

algorithm execution.

To increase the compression ratio, the yi codes

have different bit widths that change dynamically.

Initially, it is equal to 9, and the next code after code

511 already has the bit width 10. In practice, the bit

width of the code does not exceed 12. Therefore,

after the code 4095, the code of the dictionary

clearing command comes.

Fig. 1. Contents of the dictionary and

reading from it the word by the index yi
 Source: compiled by the authors

So, when the file Y is unpacked, the codes yi are

extracted from it. According to this code, the word is

read from the dictionary C, which is joined to the

string of the resulting file X. Moreover, the read

word has the reverse order of symbols, which is

corrected either by writing-reading from the stack

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

78

Computer systems and cybersecurity

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

memory, or by writing to the output buffer with

index addressing [23].

The compression ratio of the LZW algorithm

depends on the quality of the compressor and the

content of the compressed file. In real applications,

it is equal to = 1.6-38 and meets the practical

needs in many cases [25].

MODULE FOR LZW DECOMPRESSION

The module for LZW decompression is based

on the SM16 processor core, described in [26]. The

structure of the 16-bit processor core SM16 as part

of the decompressor is shown in Fig. 2. This

processor core has a well-known dual-stack archi-

tecture [27]. The processor core contains a program

counter (PC), data RAM DataRAM, program ROM

ProgramROM, instruction register (IR), return

address stack (RStack), data stack (DStack),

arithmetic and logic unit ALU. Registers T, N are

the outermost registers of the DStack. The R register

is the top of the RStack, which also acts as a loop

counter. Registers A and B serve as address pointers

to speed up data transfer.

The input file Y is fed into the FIFO buffer

IBuf. It has a built-in scheme for the selection of

individual codes yi from the sequence of bytes of the

file Y, which is controlled by an automaton. It has

interrupt signal outputs for events of filling the

buffer and detecting the the dictionary cleaning and

end-of-file commands from it.

The DICT dictionary stores up to 4095 P(i)

indices and C(i) symbols and is implemented as

RAM. The DataRAM data memory, in addition to

storing variables, is used to change the order of

characters in a word that is read from the dictionary

before writing it to the OBuf output buffer. That is,

with the help of the pointer register A, a stack is

organized in it. Its depth is determined by the

maximum length of the string encoded in the Y file.

The instructions of the processor core are

executed in one cycle of the clock signal, with the

exception of branching, constant loading, and

memory reading instructions, which are executed in

two cycles. Due to the fact that the processor core

has stack architecture, the routine call is executed in

only two clock cycles. At the same time, the context

switching is performed naturally through the RStack

and DStack. The interruption from the input buffer

filling signals and the arrival of the dictionary

cleaning command is also implemented quickly.

These properties make the architecture friendly to

the bitstream parsing and encoding algorithms that

often use branching.

A 16-bit instruction has one to three opcode

fields, F1, F2, F3, and a variable-length D field that

stores a constant or jump displacements. The

processor core can perform up to three operations

F1, F2, F3 in parallel. Several instructions have been

added to the processor core instruction set to speed

up the dictionary access and data exchanges.

Fig.2. SM16 processor core included in the LZW decompressor

Source: compiled by the authors

T N P D Stack R R Stack

ALU

Program

ROM
PC

IR

Data

RAM

14
16

OBuf

A B

16

IBuf
Input

Output DICT

SM16 core

http://aait.ccs.od.ua/index.php/journal/theme4

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 79

Due to the following additional instruction

 :L1 OUTB @ab- L1 DJNZ

the symbol from the register T is written into the

output buffer OBuf, and the next symbol from

DataRAM at the address of the index register A is

written in the register T. After that, the register A is

decremented. If the state of the register R is non-

zero, then the control flow is transferred to the label

L1, and the register R is decremented. Otherwise,

the loop is exited. Thus, the decompressed word is

rewritten from the stack organized in DataRAM to

the output buffer using a single instruction executed

in a program cycle.

It should be noted that the syntax of the

assembly language of the SM16 processor core is

largely the same as the syntax of the Forth language.

Just like the Forth programs, the compiled programs

for SM16 processor core take up little memory

compared to programs in other languages [26]. The

user of the SM16 core can add new instructions to

the instruction set and specific hardware if they help

to speed up the execution of the algorithm. The

program written in assembly language is compiled

and simulated in the developed framework

containing the simulator with a graphical interface.

RESULTS

The SM16 processor core is described in

VHDL language. When placed in a Xilinx Spartan-6

FPGA, it occupies only 632 LUTs and has a

maximum clock frequency of 95 MHz. For

comparison, the hardware volume of the 16-bit

OpenMSP430 core [28] is three times higher, and its

clock frequency is lower than in the proposed core.

The selection of yi codes from the input stream,

as well as the fixing the events of dictionary

cleaning, end of the file, or the code length change

are performed in the hardware of the IBuf buffer.

The DICT dictionary RAM has direct access by the

index i. The OBuf output buffer is hardware-

implemented FIFO. The rest of the algorithm is

performed in the program.

Thanks to the implementation of the specified

hardware blocks, it was possible to halve the cycle

of unpacking the yi code by throwing out the

instructions from the program that extract the yi code

from the input stream, monitor the arrival of the

dictionary cleaning command, or the end-of-file

symbol, form the index address of the dictionary.

The obtained parameters of the decompressor

module are given in Table 3. The hardware costs in

it are expressed in the number of configurable logic

block slices (CLBs), each of which includes from 1

to 4 LUTs, depending on the specific placement in

FPGA. It should be noted that, on average, there are

160 CLBs per memory block BRAM. So these

blocks are a valuable hardware resource. The quality

factor K is also presented there, which is equal to the

product of hardware costs and the amount of

memory. That is, the lower the K factor, the more

effective the project is. The decompressor executing

the LZW algorithm spends, on average, 15 cycles to

decompress one character. At a processor core clock

frequency of 190 MHz, decompression is carried out

at a speed of 12.6 Mbytes/s.

For comparison, a decompressor model was

tested in which the LZW algorithm is executed only

by programming the SM16 processor core in FPGA.

In order to obtain an acceptable decompression

speed during the algorithm software execution, it

was necessary to add the shift left and shift right

instructions to the instruction set. It is necessary for

extracting the variable bit length codes from the

input byte stream. As a rule, such instructions are

included in the instruction set of most known

processor architectures. Such instructions require the

additional barrel shifter circuit, which takes a lot of

hardware. As a result, the hardware costs of the

processor core increased to 239 CLBs, that is, by

24% compared to the hardware and software

implementation. Also, the decompression

throughput is halved. So, this example testifies in

favor of the hardware and software implementation

of the LZW algorithm.

Compared to hardware decompressors, this

decompressor loses in throughput. However, it has

half the amount of BRAM blocks than the device

[23] and is able to decompress files with longer lines

xi than other analogs, i.e., it has a potentially larger

value of the compression ratio .

The hardware decompressor cores are listed in

Table 3 for comparison. They are designed

according to the technology of the register transfer

level description which is compiled into a circuit at

the gate level by the proper FPGA compiler-

synthesizer. Therefore, for their modernization, they

need to perform a repeated design cycle, which is

time-consuming and associated with the addition of

equipment volumes that are worth the added

functionality. For example, in [18] a decompressor

with a static Huffman table is proposed, in which the

hardware costs double when adding a dynamic

Huffman table. Unlike the hardware modules, in the

proposed decompressor module it is easy to add

functionality without changing the structure of the

module. So, the advantage of this decompressor is

the possibility of reconfiguration, which consists in

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

80

Computer systems and cybersecurity

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Table 3. Decompressors cores parameters

Decompressor core Helion [16] Source [18] Source [23] Proposed,

no IBuf, DICT

Proposed Proposed

Algorithm LZRW3 Modified

LZW

LZW LZW LZW LZW

Xilinx FPGA chip Virtex-5 Virtex-2 Virtex-7 Spartan-6 Spartan-6 Kintex-7

Hardware costs, CLBs 166 247 139 239 193 224

RAM, BRAMs 4 8 13 7 7 7

RAM size, kB 9 18 29.25 15.75 15.75 15.75

Clock frequency, MHz 226 50 300 95 95 190

, MBytes/s 180 140 280 3.1 6.3 12.6

Qualitative index K 1494 4446 4066 3764 3040 3528

Introduction of

additional functions

Unavailable Unavailable Unavailable Available Available Available

Source: compiled by the authors

programming the processor core to perform many
other algorithms, such as unpacking GIF and TIFF
files, data exchange protocols, system testing,
control algorithms. At the same time, a slight
increase in the volume of program memory is
possible, which is already small compared to the
volume of similar programs for RISC processors
[27]. To increase the functionality, a developed
framework is used with a simulator of a
microprocessor core together with added hardware
units, which has a built-in assembler [26].

The multifunctionality of the module is
confirmed by the fact that it is easy to combine this
module with the device described in [26]. Both
devices have the same processor core. Therefore, in
order for this module to be able to perform both file
unpacking and grammatical analysis of its content, it
is only necessary to add three blocks of stack
memory to it, which occupy 45 LUTs each, and
increase the amount of program memory.

To achieve an even higher speed of
decompression, it is possible to create a multi-
processor system based on a set of the configurable
SM16 processor cores, which decompress
independent data blocks in parallel.

CONCLUSIONS

Hardware modules for the lossless data
decompression make it possible to reduce the
amount of data stored or transmitted over

communication channels, as well as to reduce the
power consumption of devices for embedded
applications. Among many lossless compression
algorithms, the LZW algorithm is the most suitable
for hardware implementation due to low hardware
costs for its implementation with an acceptable
compression ratio. A hardware and software module
for LZW decompression has been developed, which
can be configured in FPGAs of various series. The
module is built on the basis of a processor core with
stack architecture.

Thanks to the hardware and software
implementation, a decompressor module is designed,
which, with a hardware cost of 193 CLBs in Xilinx
FPGA, has a decompression speed of 12.6 MB/s
and, unlike hardware decompressors, has the ability
to be reconfigured and increase the number of
algorithms performed with no or small additional
hardware costs. The project quality factor K is low,
and the project tends to be able to its functionality is
proven. So, the goal of the research has been
achieved. Specifically, the module is configured to
decompress the GIF files. The module is intended
for use in embedded systems. The throughput of
decompression increases proportionally to the
number of such modules that work in parallel. Thus,
the proposed decompression module can be useful
when it is implemented in many embedded systems
implemented in FPGAs.

REFERENCES

1. Ritter, D., Dann, J., May, N. & Rinderle-Ma, S. “Hardware accelerated application integration

processing: Industry Paper”. DEBS '17: Proceedings of the 11th ACM International Conference on

Distributed and Event-based Systems. June 2017. p. 215–226,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85023209536&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.1145/3093742.3093911.

http://aait.ccs.od.ua/index.php/journal/theme4

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 81

2. Lafond, S. & Lilius, J. “An energy consumption model for java virtual machine”. TUCS Technical

Report. 2004; No. 597. DOI: https://doi.org/10.1007/11682127_22.

3. Li, X., Mu, L., Zang, Y. & Qin, Q. “Study on performance degradation and failure analysis of

machine gun barrel”. Defence Technology. 2020; 16. (2): 362–373,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85069836705&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.1016/j.dt.2019.05.008.

4. Zervas, N. “Firmware compression for lower energy and faster boot in IoT devices”. October 2015. –

Available from: https://www.design-reuse.com/articles/38541/firmware-compression-for-lower-energy-and-

faster-boot-in-iot-devices.html. – [Accessed: Jan., 2022].

5. Beckhoff, C., Koch, D. & Torresen, J. “Portable module relocation and bitstream compression for

Xilinx FPGAs”. 24th International Conference on Field Programmable Logic and Applications (FPL).

Munich: Germany. 2014. p. 1–8. DOI: https://doi.org/10.1109/FPL.2014.6927480,

https://www.scopus.com/record/display.uri?eid=2-s2.0-84911191271&origin=resultslist&sort=plf-f.

6. Walls, F. G. & MacInnis, A. S., “VESA display stream compression for television and cinema

applications”. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2016; 6(4): 460470,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85027032558&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.1109/JETCAS.2016.2602009.

7. “Chips&Media releases CFrame30, its groundbreaking hardware design for loss frame buffer

compression”. Seoul: Korea. 2015. – Available from: https://www.design-reuse.com/news/37671/chips-

media-lossy-frame-buffer-compression.html. – [Accessed: Jan., 2020].

8. Touba, N. A. “Survey of test vector compression techniques”. IEEE Design & Test of Computers.

2006; 23 (4): 294–303, https://www.scopus.com/record/display.uri?eid=2-s2.0-

33748510387&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/MDT.2006.105.

9. Romankevitch, A., Morozov, K., Mykytenko, S. & Kovalenko O. “On the cascade GL-model and its

properties”. Applied Aspects of Information Technology. 2022; 5 (3): 256–271. DOI:

https://doi.org/10.15276/aait.05.2022.18

10. Ponce-Cruz, C. & Ramirez-Figueroa, F. D. “Intelligent control systems with LabVIEW”. Springer.

2010. DOI: https://doi.org/10.1007/978-1-84882-684-7.
 11. Kovačec, D. “FPGA IP cores for displays”. In: Handbook of Visual Display Technology. J. Chen,

W. Cranton, M. Fihn-Eds. Springer. 2012. p. 512530, https://www.scopus.com/record/display.uri?eid=2-

s2.0-85027007071&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1007/978-3-540-79567-4_40.

12. Mozghovyi, I., Sergiyenko, A. & Yershov, R. “GIF image hardware compressors”. Information,

Computing and Intelligent systems. 2021; 2: 48–55. DOI: https://doi.org/10.20535/2708-

4930.2.2021.244189.

13. Gallager, R. “Variations on a theme by Huffman”. IEEE Transactions on Information Theory. 1978;

24. (6): 668674, https://www.scopus.com/record/display.uri?eid=2-s2.0-0018032133&origin=resultslist&

sort=plf-f. DOI: https://doi.org/10.1109/TIT.1978.1055959.

14. Salomon, D. & Motta, G. “Handbook of data compression”. 5th Ed. Springer, 2010. 1360 p. ISBN:

978-1-84882-903-9, https://www.scopus.com/record/display.uri?eid=2-s2.0-84865192560&origin=resultslist

&sort=plf-f. DOI: https://doi.org/10.1007/978-1-84882-903-9.

 15. Ziv, J. & Lempel, A. “A universal algorithm for sequential data compression”. IEEE Transactions

on Information Theory. 1977; 23 (3): 337343, https://www.scopus.com/record/display.uri?eid=2-s2.0-

0017493286&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/TIT.1977.1055714.

16. “LZRW3 data compression core for Xilinx FPGA. Full Datasheet”. Helion Technology. 2008.

p. 13. – Available from: https://www.heliontech.com/downloads/lzrw3_xilinx_datasheet.pdf. – [Accessed:

Jan. 2020].

17. Hwang, G. B., Cho, K. N., Han, C. Y., Oh, H. W., Yoon, Y, H. & Lee S. E. “Lossless

decompression accelerator for embedded processor with GUI”. Micromachines, 2021; 12 (2),

https://www.scopus.com/record/display.uri?eid=2-s2.0-85100608354&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.3390/mi12020145.

18. Ledwon, M., Cockburn, B. F. & Han, J. “High-Throughput FPGA-Based hardware accelerators for

deflate compression and decompression using high-level synthesis”. IEEE Access. 2020; 8: 6220762217,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85083429723&origin=resultslist& sort=plf-f. DOI:

https://doi.org/10.1109/ACCESS.2020.2984191.

https://doi.org/10.1007/978-3-540-79567-4_40

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

82

Computer systems and cybersecurity

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

19. Ziv, J. & Lempel, A. “Compression of individual sequences via variable-rate coding”. IEEE

Transactions on Information Theory. 1978; 24 (5): 530536,

https://www.scopus.com/record/display.uri?eid=2-s2.0-0018019231&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.1109/TIT.1978.1055934.

20. Welch, T. “A technique for high-performance data compression”. Computer. 1984; 17 (6): 819.

https://www.scopus.com/record/display.uri?eid=2-s2.0-0021439618&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.1109/MC.1984.1659158.

21. May, P. & Davies K. “Practical analysis of tiff file size reductions achievable through compression”.

iPRES 2016: 13th International Conference on Digital Preservation. Bern: Switzerland. 2016. p. 110.

22. Navqi, S., Naqvi, R., Riaz, R. A. & Siddiqui F. “Optimized RTL design and implementation of LZW

algorithm for high bandwidth applications”. Przeglad Electrotechniczny (Electrical Review). 2011; 4: 279–285,

https://www.scopus.com/record/display.uri?eid=2-s2.0-79955025506&origin=resultslist&sort=plf-f.

23. Zhou, X., Ito, Y. & Nakano, K. “An efficient implementation of LZW decompression in the FPGA”.

IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Chicago: IL,

USA. 2016. p. 599607, https://www.scopus.com/record/display.uri?eid=2-s2.0-

84991665925&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/IPDPSW.2016.33.

24. Fang, J., Chen, J., Lee, J. et al. “An Efficient High-Throughput LZ77-Based Decompressor in

Reconfigurable Logic”. J. Sign. Process. Syst. 2020; 92: 931–947,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85085762888&origin=resultslist&sort=plf-f. DOI:

https://doi.org/10.1007/s11265-020-01547-w.

25. Funasaka, S., Nakano, K. & Ito, Y. “A Parallel algorithm for LZW decompression, with GPU

Implementation”. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K.

(eds) Parallel Processing and Applied Mathematics. PPAM 2015. LNCS. Springer, Cham. 2016; Vol. 9573:

228–237, https://www.scopus.com/record/display.uri?eid=2-s2.0-84968531501&origin=resultslist&

sort=plf-f. DOI: https://doi.org/10.1007/978-3-319-32149-3_22.

26. Sergiyenko, A., Orlova, M. & Molchanov, O. “Hardware/Software Co-design for XML-Document

Processing“. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for

Engineering and Education III. ICCSEEA 2020. Advances in Intelligent Systems and Computing, Springer,

Cham. 2021; Vol 1247: 373383, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85089717777&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1007/978-3-030-55506-1_34.

27. Koopman, P. “Stack computers: the new wave”. Ellis Horwood, Mountain View Press, CA. 1989.

28. Oliver, J. P., Acle, J. P. & Boemo, E. “Power estimations vs. power measurements in Spartan-6

devices”. 2014 IX Southern Conference on Programmable Logic (SPL). Buenos Aires: Argentina. 2014.

p. 15, https://www.scopus.com/record/display.uri?eid=2-s2.0-84922109257&origin=resultslist&sort=plf-f.

DOI: https://doi.org/10.1109/SPL.2014.7002214.

Conflicts of Interest: the authors declares no conflict of interest

Received 16.01.2023
Received after revision 12.03.2023
Accepted 17.03.2023

DOI: https://doi.org/10.15276/aait.06.2023.6

УДК 004.383

Декомпресор для апаратних застосунків

Романкевич Віталій Олексійович1)

ORCID: https://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Мозговий Іван Владиславович1)

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com

Сергієнко Павло Анатолійович1)

ORCID: https://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

http://aait.ccs.od.ua/index.php/journal/theme4
https://doi.org/10.1109/SPL.2014.7002214
https://doi.org/#_blank

Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology

 2023; Vol.6 No.1: 74–83

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer systems and cybersecurity 83

Lefteris Zacharioudakis2)
ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cyt anet.com.cy

 1) Національний Технічний Університет України “КПІ ім. Ігоря Сікорського”, пр. Перемоги, 37. Київ, 03056, Україна
 2) Неапольский Університет у Пафосі, пр. Данайський, 2. Пафос, 8042, Кіпр

АНОТАЦІЯ

Застосування безвтратної компресії в спеціалізованих обчислювальних засобах дає такі переваги, як мінімізація об’єму

пам’яті, збільшення пропускної здатності інтерфейсів, зменшення енергоспоживання, покращення систем автотестування. В

статті розглянуті відомі алгоритми безвтратної компресії з метою вибору такого, що найбільш підходить для реалізації у

апаратно-програмному декомпресорі. Серед них алгоритм Lempel-Ziv-Welch (LZW) дає змогу найпростішим чином виконати

асоціативну пам’ять словника декомпресора за рахунок послідовного зчитування символів слова. Аналіз існуючих апаратних

реалізацій декомпресорів показав, що при їх розробці основна мета була збільшити пропускну здатність за рахунок збільшення

апаратних витрат та обмеження функціональності. Запропоновано виконати декомпресор LZW апаратно-програмним чином

на основі ядра мікропроцесора зі спеціалізованою системою команд. Для цього вибрано процесорне ядро зі стековою

архітектурою, розроблене авторами для задач граматичного аналізу. Додано блок пам’яті для зберігання словника та вхідний

буфер, який конвертує потік байтів запакованого файлу у послідовність розпакованих кодів, що додані до нього. Система

команд процесорного ядра скоректована з метою як пришвидшення декомпресії, так і зменшення апаратних витрат.

Декомпресор описаний мовою Very high-speed integral circuit Hardware Description Language і реалізований у програмовній

логічній інтегральній схемі. При тактовій частоті двісті мегагерц, середня пропускна здатність декомпресора – понад десять

мегабайтів на секунду. Завдяки апаратно-програмній реалізації, одержано LZW-декомпресор, який має при приблизно тих

самих апаратних витратах як у апаратного декомпресора меншу пропускну здатність за рахунок гнучкості,

багатофункціональності, які дає програмовне процесорне ядро в його складі. Зокрема, на основі даного пристрою реалізується

декомпресор Graphic Interchange Format файлів для застосунку динамічної візуалізації патернів на дисплеї вбудованої системи.

Ключові слова: безвтратна компресія; програмовна логічна інтегральна схема; апаратно-програмна розробка;

віртуальний модуль
Copyright © Національний університет «Одеська політехніка», 2023. Всі права захищені

ABOUT THE AUTHORS

Vitalii O. Romankevych - Doctor of Engineering Sciences, Professor, Professor of System Programming and Special

Computer System Department. National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37,

Peremogy Av. Kyiv, 03056, Ukraine

ORCID: http://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058

Research field: Dependability of Fault-Tolerant Multiprocessor Control Systems. Self-Testing of Multiprocessor Systems

Романкевич Віталій Олексійович - доктор технічних наук, професор, професор кафедри Cистемного

програмування та спеціальних комп’ютерних систем. Національний технічний університет України «Київський

політехнічний інститут імені Ігоря Сікорського», пр. Перемоги, 37. Київ, 03056, Україна

Ivan V. Mozghovyi - PhD student of Department of Computer Engineering. National Technical University of Ukraine “Igor

Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056, Ukraine

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com

Research field: Pattern recognition in images; embedded high-performance manycore systems in FPGA

Мозговий Іван Владиславович - аспірант кафедри Обчислювальної Техніки. Національний технічний університет

України «Київський політехнічний інститут імені Ігоря Сікорського», пр. Перемоги, 37.

Київ, 03056, Україна

Pavlo A. Serhiienko - PhD student, Assistant of Department of System Programming and Specialized Computer Systems.

National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37, Peremogy Av. Kyiv, 03056,

Ukraine

ORCID: http://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516

Research field: Pattern recognition in images; embedded high-performance manycore systems in FPGA

Сергієнко Павло Анатолійович аспірант, асистент кафедри Cистемного програмування та спеціальних

комп’ютерних систем. Національний технічний університет України «Київський політехнічний інститут імені Ігоря

Сікорського», пр. Перемоги, 37. Київ, 03056, Україна

Lefteris Zacharioudakis - PhD, Visiting Lecturer of Neapolis University Pafos, 2, Danais Avenue, Paphos, 8042, Cyprus

ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cytanet.com.cy.

Research field: Computer/network security and has a number of publications in cryptography and

authentication/identification methods

Лефтеріс Захаріудакіс PhD, викладач у Неапольскому Університеті у Пафосі, пр. Данайський, 2.

Пафос, 8042, Кіпр

