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ANNOTATION 

The use of lossless compression in the application specific computers provides such advantages as minimized amount of 

memory, increased bandwidth of interfaces, reduced energy consumption, and improved self-testing systems. The article discusses 

known algorithms of lossless compression with the aim of choosing the most suitable one for implementation in a hardware-software 

decompressor. Among them, the Lempel-Ziv-Welch (LZW) algorithm makes it possible to perform the associative memory of the 

decompressor dictionary in the simplest way by using the sequential reading the symbols of the decompressed word. The analysis of 

the existing hardware implementations of the decompressors showed that the main goal in their development was to increase the 

bandwidth at the expense of increasing hardware costs and limited functionality. It is proposed to implement the LZW decompressor 

in a hardware module based on a microprocessor core with a specialized instruction set. For this, a processor core with a stack 

architecture was selected, which is developed by the authors for the tasks of the file grammar analyzing. Additional memory block 

for the dictionary storing and an input buffer which converts the byte stream of the packed file into a sequence of unpacked codes are 

added to it. The processor core instruction set is adjusted to both speed up decompression and reduce hardware costs. The 

decompressor is described by the Very high-speed integral circuit Hardware Description Language and is implemented in a field 

programable gate array (FPGA). At a clock frequency of up to two hundred megahertz, the average throughput of the decompressor 

is more than ten megabytes per second. Because of the hardware and software implementation, an LZW decompressor is developed, 

which has approximately the same hardware costs as that of the hardware decompressor and has a lower bandwidth at the costs of 

flexibility, multifunctionality, which is provided by the processor core software. In particular, a decompressor of the Graphic 

Interchange Format files is implemented on the basis of this device in FPGA for the application of dynamic visualization of patterns 

on the embedded system display. 
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INTRODUCTION 

It is necessary to solve such contradictional 

problems as hardware minimization, energy 

consumption, and performance optimization when 

developing the embedded digital systems. The 

compression  of information makes it possible to re-

duce the volume of storage devices in this situation. 

It can also increase the bandwidth of data 

transmission channels, but also minimize power 

consumption.  

For this purpose, the lossless data compression 

application specific hardware should be used [3].  

Such minimization is achieved by reducing the 

intensity of data exchanges, especially between 

remote transmitters and receivers [1]. For example, 
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the data exchanges between the processor and 

memory during the execution of programs can 

consume up to 75 % of the energy consumed due to 

the wire heating and high-current buffer switching 

[2]. Therefore, storing data and programs in a 

compressed form and decompressing them in real 

time is effective due to reducing the memory 

volume, speeding up data loading and reducing 

power consumption.Consider the compression of 

programs and data which are loaded into the internal 

memory of the microcontroller of the Internet of 

Things module. This makes it possible to almost 

halve the power consumption of this module with 

insignificant overhead costs for the decompression 

implementation [4]. Likewise, the compression of 

the bit stream for the field programable gate array 

(FPGA) speeds up its loading [5]. 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0) 
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If the decompressor is performed as an 

application specific module, its capabilities are 

greatly expanded. For example, a data decompressor 

is now an integral part of ultra-high-resolution 

displays. Then, it becomes possible to transfer large 

volumes of data through the display interface [6, 7]. 

The decompressor of the test data, if it has low 

hardware costs, significantly increases the efficiency 

of self-diagnosis systems [8] and diagnostics of 

complex systems [9] by reducing the volume of 

stored test data. 

In the application specific systems for modeling 

and management of complex objects, the hardware 

generators of graphic elements are used, which are 

displayed on the screen in real time [10, 11]. 

However, implementing real-time rendering of these 

elements requires significant computational 

overhead using a graphics accelerator and often has 

excessive hidden latency. In addition, the 

development of programs that generate such images 

is time-consuming. Therefore, the use of a 

decompressor in the GIF format, in which the LZW 

algorithm is implemented, makes it possible to 

implement such hardware generators of various 

dynamic graphic elements for display on the screen 

in real time. These can be, for example, images of 

measuring devices, such as arrow indicators or 

patterns of the object position in space [12]. 

The decompressing files in the LZW standard 

using hardware-software module is proposed in this 

article. At the same time, the proper decompression 

speed is ensured by the implementation of the 

decompressor in a processor core with a specialized 

architecture, which is configured in FPGA.  

ALGORITHMS AND TOOLS FOR 

DECOMPRESSION 

The overall goal of data compression is to 

reduce the number of bits needed to represent 

information. The lossless compression means that 

the original data can be accurately reproduced by the 

decompressor. In this way, it is possible to compress 

software code, digital input data, medical data, text 

and other content that is sensitive to distortion. 

During Huffman compression, the unique code 

words are assigned to a bit sequence, the length of 

which is inversely proportional to the frequency of 

such lines [13]. A more complex but slower method 

of arithmetic coding gives a slightly higher 

compression ratio , which is the ratio of file lengths 

before and after compression. Both methods require 

statistical analysis of the processed data [14]. 

Methods based on a dynamically generated 

dictionary are suitable for data compression without 

prior analysis. Thus, the LZ77 algorithm uses a 

dictionary buffer and a preview buffer [15]. The 

longest line in the preview buffer that matches a line 

from the dictionary buffer is converted to a code that 

is the index of the dictionary buffer. However, it is 

not suitable for hardware implementation because 

the dictionary buffer and preview buffer sizes are 

too large for hardware implementation. The LZRW3 

algorithm is a variant of the LZ77 algorithm, in 

which the length of lines in the dictionary is 

significantly limited, and the search in it is 

accelerated using a hash table. Thanks to this, it has 

become widespread in FPGAs and its 

implementation provides a throughput of up to 180 

MB/s at a clock frequency of 220 MHz [16]. 

The LZ77 algorithm together with Huffman 

coding is used in the Deflate method and is widely 

used in hardware decompressors of GZIP files [17, 18]. 

The LZ78 algorithm creates a dictionary table 

and finds in it the longest line corresponding to the 

input line [19]. If there is no string matching the 

input in the dictionary table, the index of the 

recognized string, which is one character shorter, 

and the last character of this string are outputted. 

The LZW algorithm is a variant of the LZ78 

algorithm, which outputs only the index of the 

corresponding row of the dictionary table in a 

compressed file [20]. In addition, the length of the 

string replaced by the index reaches several hundred 

bytes, due to which the compression of images with 

a uniform background is achieved more than ten 

times. The work [21] shows that the LZW algorithm 

is not inferior to the Deflate method when compres-

sing images with eight-bit pixels into TIFF files. 

According to LZ77, LZ78 algorithms, the de-

compression complexity is much lower than the co-

mpression one due to the fact that the reproduction 

of the dictionary and the search in it are performed 

much easier by the decompression. Because of this, 

the LZW algorithm is common in systems where 

decompression occurs more often than compression, 

for example, when decompressing the GIF files. 

Therefore, this algorithm is chosen for 

implementation. 

There are several implementations of the LZW 

decompressor in FPGA, among them the decom-

pressor [22] uses fixed-length words and one 

dictionary table and achieves a maximum 

decompression speed of 160 MB/s at a clock 

frequency of 50 MHz. The decompressor [23] has 

the highest bandwidth of 280 MB/s at a clock 

frequency of 300 MHz. This speed is achieved due 

to the parallelization of the processes of creating the 

dictionary, reading a line from it, and forming the 
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output sequence, as well as an increased number of 

memory blocks. 

Table 1 shows a comparison the decompressor 

parameters executing the LZ77, Deflate and LZW 

algorithms when they are implemented in FPGA. 

Here, hardware costs are expressed in the number of 

look-up tables (LUTs) which are the main elements 

of FPGA, as well as built-in two-port memory 

blocks (BRAMs), which have a volume of 18kB. 

Such a comparison makes it possible to conclude 

that the decompressors with the LZW algorithm 

have a gain in the used hardware volume, and the 

ratio of hardware volume per unit of bandwidth is 

more than seven times higher. It also requires a 

smaller amount of RAM in comparison with 

decompressors that other algorithms perform. 

 

Table 1. Parameters of some decompressors given 

in the references 

 
Parameter Reference 

[24] [17] [18] [23] 

Algorithm LZ77 Deflate Deflate LZW 

Hardware 

volume, LUTs 

56000 3362 15691 307 

BRAMs 50 16 30 13 

Throughput, 

MB/s   

7200 5.4 97.4 280 

Hardware 

volume per unit 

of bandwidth, 

LUTs/MB/s 

7.8 623 161 1.1 

Source: compiled by the authors 

It is worth mentioning that the LZW algorithm 

was not widely used among scientists, programmers 

and engineers for decades due to the fact that it was 

patented and intellectual property rights prevented 

its implementation [21]. Moreover, the patent holder 

Unisys defended its rights to use the LZW 

algorithm, especially in hardware devices. Now the 

patent has expired and conditions have appeared to 

consider this algorithm in more detail and implement 

it more widely. 

In many cases, the extreme decompressor 

bandwidth is not required, as in the examples in the 

introduction. But at the same time, the speed of 

software decompression may not be sufficient or the 

necessary time resources of the central processor are 

spent during its execution. Therefore, this article 

considers the idea of implementing LZW 

decompression in an application specific compact 

processor core, the architecture of which is 

configured for labor-intensive algorithm operations. 

At the same time, such a processor core, in addition 

to decompression, is capable of performing other 

algorithms, for example, decompressing GIF files, 

implementing data exchange protocols, and 

organizing system testing.   

PURPOSE AND OBJECTIVES OF THE 

RESEARCH  

The purpose of this research is to develop a 

hardware-software decompressor that performs the 

lossless LZW algorithm, which, comparing to the 

hardware decompressor, has the same hardware 

volume but is able to perform many other algorithms 

and has the property of reconfiguration. 

To achieve this goal, the following tasks are 

performed in this work: 

1. Analysis of the LZW decompression 

algorithm in order to determine the operations that 

should be performed in hardware and software. 

2. Research and modification of the architecture 

of the microprocessor core configured in FPGA with 

the correction of its instruction set and the addition 

of hardware blocks that accelerate decompression. 

3. Creating a VHDL model of a hardware-

software decompressor, programming its processor 

core, configuring it into FPGA and determining the 

parameters of the resulting decompressor module. 

Comparison of the new decompressor with existing 

samples. 

4. Analysis of the possibilities of a new 

decompressor implementation. 

LZW DECOMPRESSION  

The LZW decompression algorithm is 

described by the following program text:  

 

i = 0; 

while (yi  257){  

      if (yi = 256) InitT(С); 

      if(yi   C){ 

Out(C(yi)); //a string is read from 

dictionary.  

AddT(C(yi−1) + C1(yi)); // a string is 

                       //added to dictionary  

yi−1 = yi ;          //pointer of yi is stored  

} 

else { 

    Out(C(yi−1) + C1(yi−1));  

     AddT(C(yi−1) + C1(yi−1)); 

} 

           i++; 

    } 

} 

http://aait.ccs.od.ua/index.php/journal/theme4
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Here, Y = y0, y1, …, ym−1 is the input sequence of 

codes from the compressed file,   

X = x0, x1, …, xn−1 is the uncompressed string 

forming the output file, the characters of which are 

selected from an alphabet of k characters 

α0, α1,…, αk-1, 

C1(yi) is the first character of the string, which 

is encoded by the code yi, 

       Out(C(yi)) – the function of adding the word 

C(yi) from the dictionary to the output file, 

AddT() is the function of adding a new word to 

the dictionary, 

«+» is the concatenation operation,  

InitT(С) — is the initialization function of the 

dictionary C, which forms the rows of alphabet 

symbols in the table C, the rest of the rows are 

empty, and the index field of the previous symbol is 

zero. 

As a rule, k = 256. For example, if the index AB 

is 264, then C (264) = AB. Consider the codes  

0 – 255 are the character codes of the ASCII table. 

The code 256 is the command to clear the 

dictionary, and code 257 is the end-of-compressed 

code. 

Consider an example of a compressed file in the 

form of the sequence 256, 66, 65, 95, 258, 258, 95, 

65, 261, 257. The step-by-step process of unpacking 

this sequence is shown in Table 2. 

Table 2. Eexample of decompressing a file using 

the LZW algorithm 
 

yi yi-1 Dictio-

nary 

reading 

Dictionary 

writing 

Decompressor 

output 

256   Clearing  

66 256 B  B 

65 66 A 258->BA BA 

95 65 _ 259->A_ BA_ 

258 95 BA 260->_B BA_BA 

258 258 BA 261->BAB BA_BABA 

95 258 _ 262->BA_ BA_BABA_ 

65 95 A 263->_A BA_BABA_A 

261 65 BAB 264->AB BA_BABA_ 

ABAB 

257 261 (eof) End BA_BABA_ 

ABAB(eof) 
Source: compiled by the authors 

 

The length of strings in a C dictionary is 

variable and can reach hundreds of characters. 

Therefore, it is impractical to implement the 

dictionary in a hardware decompressor in the form 

of a random-access memory (RAM) device, the 

word of which has a length of this order. Because of 

this, in all known hardware decompressors, this 

dictionary is implemented as a list. 

The Fig. 1 illustrates the contents of the 

dictionary RAM, which has an address-index i, the 

field P(i) of the pointer to the previous character of 

the line and the field C(i) of the next character of the 

string.  

According to the example in the Table 1, 

consider the code-index 261 is inputted to the 

dictionary input. Then the last symbol of line B and 

the index of the previous symbol 258 are selected 

from RAM, after that the symbol A of the string and 

the index of the first symbol B are selected. The first 

symbol B is selected last. At the same time, the 

formation of the next word AB in the dictionary 

consists in writing in the table at index 264 the 

symbol B and the index of symbol A, which is the 

input code yi−1 that is delayed for one period of the 

algorithm execution. 

To increase the compression ratio, the yi codes 

have different bit widths that change dynamically. 

Initially, it is equal to 9, and the next code after code 

511 already has the bit width 10. In practice, the bit 

width of the code does not exceed 12. Therefore, 

after the code 4095, the code of the dictionary 

clearing command comes. 

 

 
Fig. 1. Contents of the dictionary and 

reading from it the word by the index yi 
  Source: compiled by the authors 

 

So, when the file Y is unpacked, the codes yi are 

extracted from it. According to this code, the word is 

read from the dictionary C, which is joined to the 

string of the resulting file X. Moreover, the read 

word has the reverse order of symbols, which is 

corrected either by writing-reading from the stack 
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memory, or by writing to the output buffer with 

index addressing [23]. 

The compression ratio of the LZW algorithm 

depends on the quality of the compressor and the 

content of the compressed file. In real applications, 

it is equal to  = 1.6-38 and meets the practical 

needs in many cases [25]. 

MODULE FOR LZW DECOMPRESSION 

The module for LZW decompression is based 

on the SM16 processor core, described in [26]. The 

structure of the 16-bit processor core SM16 as part 

of the decompressor is shown in Fig. 2. This 

processor core has a well-known dual-stack archi-

tecture [27]. The processor core contains a program 

counter (PC), data RAM DataRAM, program ROM 

ProgramROM, instruction register (IR), return 

address stack (RStack), data stack (DStack), 

arithmetic and logic unit ALU. Registers T, N are 

the outermost registers of the DStack. The R register 

is the top of the RStack, which also acts as a loop 

counter. Registers A and B serve as address pointers 

to speed up data transfer.  

The input file Y is fed into the FIFO buffer 

IBuf. It has a built-in scheme for the selection of 

individual codes yi from the sequence of bytes of the 

file Y, which is controlled by an automaton. It has 

interrupt signal outputs for events of filling the 

buffer and detecting the the dictionary cleaning and 

end-of-file commands from it. 

The DICT dictionary stores up to 4095 P(i) 

indices and C(i) symbols and is implemented as 

RAM. The DataRAM data memory, in addition to 

storing variables, is used to change the order of 

characters in a word that is read from the dictionary 

before writing it to the OBuf output buffer. That is, 

with the help of the pointer register A, a stack is 

organized in it. Its depth is determined by the 

maximum length of the string encoded in the Y file. 

The instructions of the processor core are 

executed in one cycle of the clock signal, with the 

exception of branching, constant loading, and 

memory reading instructions, which are executed in 

two cycles. Due to the fact that the processor core 

has stack architecture, the routine call is executed in 

only two clock cycles. At the same time, the context 

switching is performed naturally through the RStack 

and DStack. The interruption from the input buffer 

filling signals and the arrival of the dictionary 

cleaning command is also implemented quickly. 

These properties make the architecture friendly to 

the bitstream parsing and encoding algorithms that 

often use branching. 

A 16-bit instruction has one to three opcode 

fields, F1, F2, F3, and a variable-length D field that 

stores a constant or jump displacements. The 

processor core can perform up to three operations 

F1, F2, F3 in parallel. Several instructions have been 

added to the processor core instruction set to speed 

up the dictionary access and data exchanges.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.2. SM16 processor core included in the LZW decompressor 

Source: compiled by the authors 
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Due to the following additional instruction  

           :L1 OUTB @ab- L1 DJNZ 

the symbol from the register T is written into the 

output buffer OBuf, and the next symbol from 

DataRAM at the address of the index register A is 

written in the register T. After that, the register A is 

decremented. If the state of the register R is non-

zero, then the control flow is transferred to the label 

L1, and the register R is decremented. Otherwise, 

the loop is exited. Thus, the decompressed word is 

rewritten from the stack organized in DataRAM to 

the output buffer using a single instruction executed 

in a program cycle. 

It should be noted that the syntax of the 

assembly language of the SM16 processor core is 

largely the same as the syntax of the Forth language. 

Just like the Forth programs, the compiled programs 

for SM16 processor core take up little memory 

compared to programs in other languages [26]. The 

user of the SM16 core can add new instructions to 

the instruction set and specific hardware if they help 

to speed up the execution of the algorithm. The 

program written in assembly language is compiled 

and simulated in the developed framework 

containing the simulator with a graphical interface. 

RESULTS 

The SM16 processor core is described in 

VHDL language. When placed in a Xilinx Spartan-6 

FPGA, it occupies only 632 LUTs and has a 

maximum clock frequency of 95 MHz. For 

comparison, the hardware volume of the 16-bit 

OpenMSP430 core [28] is three times higher, and its 

clock frequency is lower than in the proposed core. 

The selection of yi codes from the input stream, 

as well as the fixing the events of dictionary 

cleaning, end of the file, or the code length change 

are performed in the hardware of the IBuf buffer. 

The DICT dictionary RAM has direct access by the 

index i. The OBuf output buffer is hardware-

implemented FIFO. The rest of the algorithm is 

performed in the program. 

Thanks to the implementation of the specified 

hardware blocks, it was possible to halve the cycle 

of unpacking the yi code by throwing out the 

instructions from the program that extract the yi code 

from the input stream, monitor the arrival of the 

dictionary cleaning command, or the end-of-file 

symbol, form the index address of the dictionary. 

The obtained parameters of the decompressor 

module are given in Table 3. The hardware costs in 

it are expressed in the number of configurable logic 

block slices (CLBs), each of which includes from 1 

to 4 LUTs, depending on the specific placement in 

FPGA. It should be noted that, on average, there are 

160 CLBs per memory block BRAM. So these 

blocks are a valuable hardware resource. The quality 

factor K is also presented there, which is equal to the 

product of hardware costs and the amount of 

memory. That is, the lower the K factor, the more 

effective the project is. The decompressor executing 

the LZW algorithm spends, on average, 15 cycles to 

decompress one character. At a processor core clock 

frequency of 190 MHz, decompression is carried out 

at a speed of 12.6 Mbytes/s. 

For comparison, a decompressor model was 

tested in which the LZW algorithm is executed only 

by programming the SM16 processor core in FPGA. 

In order to obtain an acceptable decompression 

speed during the algorithm software execution, it 

was necessary to add the shift left and shift right 

instructions to the instruction set. It is necessary for 

extracting the variable bit length codes from the 

input byte stream. As a rule, such instructions are 

included in the instruction set of most known 

processor architectures. Such instructions require the 

additional barrel shifter circuit, which takes a lot of 

hardware. As a result, the hardware costs of the 

processor core increased to 239 CLBs, that is, by 

24% compared to the hardware and software 

implementation. Also, the decompression 

throughput is halved. So, this example testifies in 

favor of the hardware and software implementation 

of the LZW algorithm. 

Compared to hardware decompressors, this 

decompressor loses in throughput. However, it has 

half the amount of BRAM blocks than the device 

[23] and is able to decompress files with longer lines 

xi than other analogs, i.e., it has a potentially larger 

value of the compression ratio . 

The hardware decompressor cores are listed in 

Table 3 for comparison. They are designed 

according to the technology of the register transfer 

level description which is compiled into a circuit at 

the gate level by the proper FPGA compiler-

synthesizer. Therefore, for their modernization, they 

need to perform a repeated design cycle, which is 

time-consuming and associated with the addition of 

equipment volumes that are worth the added 

functionality. For example, in [18] a decompressor 

with a static Huffman table is proposed, in which the 

hardware costs double when adding a dynamic 

Huffman table. Unlike the hardware modules, in the 

proposed decompressor module it is easy to add 

functionality without changing the structure of the 

module. So, the advantage of this decompressor is 

the possibility of reconfiguration, which consists in  
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Table 3. Decompressors cores parameters 

Decompressor core  Helion [16] Source [18] Source [23] Proposed, 

no IBuf, DICT 

Proposed Proposed 

Algorithm LZRW3 Modified 

LZW 

LZW LZW LZW LZW 

Xilinx FPGA chip Virtex-5 Virtex-2 Virtex-7 Spartan-6 Spartan-6 Kintex-7 

Hardware costs, CLBs 166 247 139 239 193 224 

RAM, BRAMs 4 8 13 7 7 7 

RAM size, kB 9 18 29.25 15.75 15.75 15.75 

Clock frequency, MHz 226 50 300 95 95 190 

, MBytes/s 180 140 280 3.1 6.3 12.6 

Qualitative index K 1494 4446 4066 3764 3040 3528 

Introduction of 

additional functions 

Unavailable Unavailable Unavailable Available Available Available 

Source: compiled by the authors 

programming the processor core to perform many 
other algorithms, such as unpacking GIF and TIFF 
files, data exchange protocols, system testing, 
control algorithms. At the same time, a slight 
increase in the volume of program memory is 
possible, which is already small compared to the 
volume of similar programs for RISC processors 
[27]. To increase the functionality, a developed 
framework is used with a simulator of a 
microprocessor core together with added hardware 
units, which has a built-in assembler [26]. 

The multifunctionality of the module is 
confirmed by the fact that it is easy to combine this 
module with the device described in [26]. Both 
devices have the same processor core. Therefore, in 
order for this module to be able to perform both file 
unpacking and grammatical analysis of its content, it 
is only necessary to add three blocks of stack 
memory to it, which occupy 45 LUTs each, and 
increase the amount of program memory. 

To achieve an even higher speed of 
decompression, it is possible to create a multi-
processor system based on a set of the configurable 
SM16 processor cores, which decompress 
independent data blocks in parallel. 

CONCLUSIONS 

Hardware modules for the lossless data 
decompression make it possible to reduce the 
amount of data stored or transmitted over 

communication channels, as well as to reduce the 
power consumption of devices for embedded 
applications. Among many lossless compression 
algorithms, the LZW algorithm is the most suitable 
for hardware implementation due to low hardware 
costs for its implementation with an acceptable 
compression ratio. A hardware and software module 
for LZW decompression has been developed, which 
can be configured in FPGAs of various series. The 
module is built on the basis of a processor core with 
stack architecture. 

Thanks to the hardware and software 
implementation, a decompressor module is designed, 
which, with a hardware cost of 193 CLBs in Xilinx 
FPGA, has a decompression speed of 12.6 MB/s 
and, unlike hardware decompressors, has the ability 
to be reconfigured and increase the number of 
algorithms performed with no or small additional 
hardware costs. The project quality factor K is low, 
and the project tends to be able to its functionality is 
proven. So, the goal of the research has been 
achieved. Specifically, the module is configured to 
decompress the GIF files. The module is intended 
for use in embedded systems. The throughput of 
decompression increases proportionally to the 
number of such modules that work in parallel. Thus, 
the proposed decompression module can be useful 
when it is implemented in many embedded systems 
implemented in FPGAs. 

REFERENCES 

1. Ritter, D., Dann, J., May, N. & Rinderle-Ma, S. “Hardware accelerated application integration 

processing: Industry Paper”. DEBS '17: Proceedings of the 11th ACM International Conference on 

Distributed and Event-based Systems. June 2017. p. 215–226, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85023209536&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.1145/3093742.3093911. 

http://aait.ccs.od.ua/index.php/journal/theme4


Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology        

                                                                                                                                        2023; Vol.6 No.1: 74–83   

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Computer systems and cybersecurity 81 

 

2. Lafond, S. & Lilius, J. “An energy consumption model for java virtual machine”. TUCS Technical 

Report. 2004; No. 597. DOI: https://doi.org/10.1007/11682127_22. 

3. Li, X., Mu, L., Zang, Y. & Qin, Q. “Study on performance degradation and failure analysis of 

machine gun barrel”. Defence Technology. 2020; 16. (2): 362–373, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85069836705&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.1016/j.dt.2019.05.008. 

4. Zervas, N. “Firmware compression for lower energy and faster boot in IoT devices”. October 2015. – 

Available from: https://www.design-reuse.com/articles/38541/firmware-compression-for-lower-energy-and-

faster-boot-in-iot-devices.html. – [Accessed: Jan., 2022]. 

5. Beckhoff, C., Koch, D. & Torresen, J. “Portable module relocation and bitstream compression for 

Xilinx FPGAs”. 24th International Conference on Field Programmable Logic and Applications (FPL). 

Munich: Germany. 2014. p. 1–8. DOI: https://doi.org/10.1109/FPL.2014.6927480,  

https://www.scopus.com/record/display.uri?eid=2-s2.0-84911191271&origin=resultslist&sort=plf-f.  

6. Walls, F. G. & MacInnis, A. S., “VESA display stream compression for television and cinema 

applications”. IEEE Journal on Emerging and Selected Topics in Circuits and Systems. 2016; 6(4): 460470, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85027032558&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.1109/JETCAS.2016.2602009. 

7. “Chips&Media releases CFrame30, its groundbreaking hardware design for loss frame buffer 

compression”. Seoul: Korea. 2015. – Available from: https://www.design-reuse.com/news/37671/chips-

media-lossy-frame-buffer-compression.html. – [Accessed: Jan., 2020]. 

8. Touba, N. A. “Survey of test vector compression techniques”. IEEE Design & Test of Computers. 

2006; 23 (4): 294–303, https://www.scopus.com/record/display.uri?eid=2-s2.0-

33748510387&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/MDT.2006.105. 

9. Romankevitch, A., Morozov, K., Mykytenko, S. & Kovalenko O. “On the cascade GL-model and its 

properties”. Applied Aspects of Information Technology. 2022; 5 (3): 256–271. DOI: 

https://doi.org/10.15276/aait.05.2022.18  

10. Ponce-Cruz, C. & Ramirez-Figueroa, F. D. “Intelligent control systems with LabVIEW”. Springer. 

2010. DOI: https://doi.org/10.1007/978-1-84882-684-7. 
        11. Kovačec, D. “FPGA IP cores for displays”. In: Handbook of Visual Display Technology. J. Chen, 

W. Cranton, M. Fihn-Eds. Springer. 2012. p. 512530, https://www.scopus.com/record/display.uri?eid=2-

s2.0-85027007071&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1007/978-3-540-79567-4_40. 

12. Mozghovyi, I., Sergiyenko, A. & Yershov, R. “GIF image hardware compressors”. Information, 

Computing and Intelligent systems. 2021; 2: 48–55. DOI: https://doi.org/10.20535/2708-

4930.2.2021.244189. 

13. Gallager, R. “Variations on a theme by Huffman”. IEEE Transactions on Information Theory. 1978; 

24. (6): 668674, https://www.scopus.com/record/display.uri?eid=2-s2.0-0018032133&origin=resultslist& 

sort=plf-f. DOI: https://doi.org/10.1109/TIT.1978.1055959. 

14. Salomon, D. & Motta, G. “Handbook of data compression”. 5th Ed. Springer, 2010. 1360 p. ISBN: 

978-1-84882-903-9, https://www.scopus.com/record/display.uri?eid=2-s2.0-84865192560&origin=resultslist 

&sort=plf-f. DOI: https://doi.org/10.1007/978-1-84882-903-9. 

        15. Ziv, J. & Lempel, A. “A universal algorithm for sequential data compression”. IEEE Transactions 

on Information Theory. 1977; 23 (3): 337343, https://www.scopus.com/record/display.uri?eid=2-s2.0-

0017493286&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/TIT.1977.1055714. 

16. “LZRW3 data compression core for Xilinx FPGA. Full Datasheet”. Helion Technology. 2008.  

p. 13. – Available from: https://www.heliontech.com/downloads/lzrw3_xilinx_datasheet.pdf. – [Accessed: 

Jan. 2020]. 

17. Hwang, G. B., Cho, K. N., Han, C. Y., Oh, H. W., Yoon, Y, H. & Lee S. E. “Lossless 

decompression accelerator for embedded processor with GUI”. Micromachines, 2021; 12 (2), 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85100608354&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.3390/mi12020145. 

18. Ledwon, M., Cockburn, B. F. & Han, J. “High-Throughput FPGA-Based hardware accelerators for 

deflate compression and decompression using high-level synthesis”. IEEE Access. 2020; 8: 6220762217, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85083429723&origin=resultslist& sort=plf-f. DOI: 

https://doi.org/10.1109/ACCESS.2020.2984191. 

https://doi.org/10.1007/978-3-540-79567-4_40


Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology        

                                                                                                                                        2023; Vol.6 No.1: 74–83  

82 

 

Computer systems and cybersecurity 

 

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

 

19. Ziv, J. & Lempel, A. “Compression of individual sequences via variable-rate coding”. IEEE 

Transactions on Information Theory. 1978; 24 (5): 530536, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0018019231&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.1109/TIT.1978.1055934. 

20. Welch, T. “A technique for high-performance data compression”. Computer. 1984; 17 (6): 819. 

https://www.scopus.com/record/display.uri?eid=2-s2.0-0021439618&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.1109/MC.1984.1659158. 

21. May, P. & Davies K. “Practical analysis of tiff file size reductions achievable through compression”. 

iPRES 2016: 13th International Conference on Digital Preservation. Bern: Switzerland. 2016. p. 110. 

22. Navqi, S., Naqvi, R., Riaz, R. A. & Siddiqui F. “Optimized RTL design and implementation of LZW 

algorithm for high bandwidth applications”. Przeglad Electrotechniczny (Electrical Review). 2011; 4: 279–285, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-79955025506&origin=resultslist&sort=plf-f. 

23. Zhou, X., Ito, Y. & Nakano, K. “An efficient implementation of LZW decompression in the FPGA”. 

IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). Chicago: IL, 

USA. 2016. p. 599607, https://www.scopus.com/record/display.uri?eid=2-s2.0-

84991665925&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1109/IPDPSW.2016.33. 

24. Fang, J., Chen, J., Lee, J. et al. “An Efficient High-Throughput LZ77-Based Decompressor in 

Reconfigurable Logic”. J. Sign. Process. Syst. 2020; 92: 931–947, 

https://www.scopus.com/record/display.uri?eid=2-s2.0-85085762888&origin=resultslist&sort=plf-f. DOI: 

https://doi.org/10.1007/s11265-020-01547-w. 

25. Funasaka, S., Nakano, K. & Ito, Y. “A Parallel algorithm for LZW decompression, with GPU 

Implementation”. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. 

(eds) Parallel Processing and Applied Mathematics. PPAM 2015. LNCS. Springer, Cham. 2016; Vol. 9573:  

228–237, https://www.scopus.com/record/display.uri?eid=2-s2.0-84968531501&origin=resultslist& 

sort=plf-f. DOI: https://doi.org/10.1007/978-3-319-32149-3_22. 

26. Sergiyenko, A., Orlova, M. & Molchanov, O. “Hardware/Software Co-design for XML-Document 

Processing“. In: Hu, Z., Petoukhov, S., Dychka, I., He, M. (eds) Advances in Computer Science for 

Engineering and Education III. ICCSEEA 2020. Advances in Intelligent Systems and Computing, Springer, 

Cham. 2021; Vol 1247: 373383, https://www.scopus.com/record/display.uri?eid=2-s2.0-

85089717777&origin=resultslist&sort=plf-f. DOI: https://doi.org/10.1007/978-3-030-55506-1_34. 

27. Koopman, P. “Stack computers: the new wave”. Ellis Horwood, Mountain View Press, CA. 1989. 

28. Oliver, J. P., Acle, J. P. & Boemo, E. “Power estimations vs. power measurements in Spartan-6 

devices”. 2014 IX Southern Conference on Programmable Logic (SPL). Buenos Aires: Argentina. 2014. 

p. 15, https://www.scopus.com/record/display.uri?eid=2-s2.0-84922109257&origin=resultslist&sort=plf-f. 

DOI: https://doi.org/10.1109/SPL.2014.7002214. 

 
Conflicts of Interest: the authors declares no conflict of interest  
    
Received  16.01.2023      
Received after revision  12.03.2023  
Accepted  17.03.2023      

 
DOI: https://doi.org/10.15276/aait.06.2023.6 

УДК 004.383 

Декомпресор для апаратних застосунків 

Романкевич Віталій Олексійович1) 

ORCID: https://orcid.org/0000-0003-4696-5935; romankev@scs.kpi.ua. Scopus Author ID: 57193263058 

Мозговий Іван Владиславович1) 

ORCID: https://orcid.org/0000-0001-5469-486X; mozg.v34@gmail.com 

Сергієнко Павло Анатолійович1) 

ORCID: https://orcid.org/0000-0003-3030-0074; paulsrgnk002@gmail.com. Scopus Author ID: 57204497516   

http://aait.ccs.od.ua/index.php/journal/theme4
https://doi.org/10.1109/SPL.2014.7002214
https://doi.org/#_blank


Romankevych V. O., Mozghovyi I. V., Serhiienko P. A., Zacharioudakis L. / Applied Aspects of Information Technology        

                                                                                                                                        2023; Vol.6 No.1: 74–83   

ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 

Computer systems and cybersecurity 83 

 

Lefteris Zacharioudakis2)  
ORCID: https://orcid.org/0000-0002-9658-3073; compusci@cyt anet.com.cy 

       1) Національний Технічний Університет України “КПІ ім. Ігоря Сікорського”, пр. Перемоги, 37. Київ, 03056, Україна 
                                                                                                             2) Неапольский Університет у Пафосі, пр. Данайський, 2. Пафос, 8042, Кіпр 

АНОТАЦІЯ 

Застосування безвтратної компресії в спеціалізованих обчислювальних засобах дає такі переваги, як мінімізація об’єму 

пам’яті, збільшення пропускної здатності інтерфейсів, зменшення енергоспоживання, покращення систем автотестування. В 

статті розглянуті відомі алгоритми безвтратної компресії з метою вибору такого, що найбільш підходить для реалізації у 

апаратно-програмному декомпресорі. Серед них алгоритм Lempel-Ziv-Welch (LZW) дає змогу найпростішим чином виконати 

асоціативну пам’ять словника декомпресора за рахунок послідовного зчитування символів слова. Аналіз існуючих апаратних 

реалізацій декомпресорів показав, що при їх розробці основна мета була збільшити пропускну здатність за рахунок збільшення 

апаратних витрат та обмеження функціональності.  Запропоновано виконати декомпресор LZW апаратно-програмним чином 

на основі ядра мікропроцесора зі спеціалізованою системою команд. Для цього вибрано процесорне ядро зі стековою 

архітектурою, розроблене авторами для задач граматичного аналізу. Додано блок пам’яті для зберігання словника та вхідний 

буфер, який конвертує потік байтів запакованого файлу у послідовність розпакованих кодів, що додані до нього. Система 

команд процесорного ядра скоректована з метою як пришвидшення декомпресії, так і зменшення апаратних витрат. 

Декомпресор описаний мовою Very high-speed integral circuit Hardware Description Language і реалізований у програмовній 

логічній інтегральній схемі. При тактовій частоті двісті мегагерц, середня пропускна здатність декомпресора – понад десять 

мегабайтів на секунду. Завдяки апаратно-програмній реалізації, одержано LZW-декомпресор, який має при приблизно тих 

самих апаратних витратах як у апаратного декомпресора меншу пропускну здатність за рахунок гнучкості, 

багатофункціональності, які дає програмовне процесорне ядро в його складі. Зокрема, на основі даного пристрою реалізується 

декомпресор Graphic Interchange Format файлів для застосунку динамічної візуалізації патернів на дисплеї вбудованої системи. 

Ключові слова: безвтратна компресія; програмовна логічна інтегральна схема; апаратно-програмна розробка; 

віртуальний модуль 
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