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ABSTRACT 
 

In this article, the problem of political leaning classification of the text resource is solved. First, a detailed analysis of ten stud-

ies on the work’s topic was performed in the form of comparative characteristics of the used methodologies. Literary sources were 

compared according to the problem-solving methods, the learning that was carried out, the evaluation metrics, and according to the 

vectorizations. Thus, it was determined that machine learning algorithms and neural networks, as well as vectorization methods TF-

IDF and Word2Vec, were most often used to solve the problem. Next, various classification models of whether textual information is 

pro-Ukrainian or pro-Russian were built based on a dataset containing messages from social media users about the events of the 

large-scale Russian invasion of Ukraine from February 24, 2022. The problem was solved with the help of Support Vector Machines, 

Decision Tree, Random Forest, Naïve Bayes classifier, eXtreme Gradient Boosting and Logistic Regression machine learning algo-

rithms, Convolutional Neural Networks, Long short-term memory and BERT neural networks, techniques for working with unbal-

anced data Random Oversampling, Random Undersampling , SMOTE and SMOTETomek, as well as stacking ensembles of models. 

Among the machine learning algorithms, LR performed best, showing a macro F1-score value of 0.7966 when features were trans-

formed by TF-IDF vectorization and 0.7933 when BoW. Among neural networks, the best macro F1-score value of 0.76 was ob-

tained using CNN and LSTM. Applying data balancing techniques failed to improve the results of machine learning algorithms. 

Next, ensembles of models from machine learning algorithms were determined. Two of the constructed ensembles achieved the same 

macro F1-score value of 0.7966 as with LR. Ensembles that was able to do so consisted of the TF-IDF vectorization, the B-NBC 

meta-model, and the SVC, NuSVC LR, and SVC, LR base models, respectively. Thus, three classifiers, the LR machine learning 

algorithm and two ensembles of models, which were defined as a combination of existing methods of solving the problem, demon-

strated the largest macro F1-score value of 0.7966. The obtained models can be used for a detailed review of various news publica-

tions according to the political leaning characteristic, information about which can help people identify being isolated by a filter  

bubble. 

Keywords: Text classification; political leaning; machine learning algorithms; neural networks; ensembles of models; natural 

language processing. 
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INTRODUCTION.  

FORMULATION OF THE PROBLEM 

The Internet, social networks and messengers 

have become an integral part of human life. There 

are thousands of news resources, thousands of pages 

in social networks that publish various news. It is 

physically impossible to monitor all the available 

sources, so a small part of the resources is selected, 

from which the world is known. 

When a person follows certain news resources, 

recommendation systems suggest similar ones. In 

this way, the number of sources that a person 

follows increases, and the risk of falling into a filter 

bubble also increases. A filter bubble is when a 

person consumes information one-sidedly, because 

the resources they follow are similar, and they share 
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the same point of view, political trend or position. In 

this way, a person is isolated from other points of 

view, opinions, etc. 

It is worth noting the role of news resources in 

the modern world as a whole. Now is an interesting 

and at the same time difficult time, there are 

pandemics, wars, crises, Russia still exists, which 

has always been and always remains a threat to the 

civilized world. Thus, it is clear that it is not 

physically possible to search for all the primary 

sources on your own due to the large number of 

events. Because of this people begin to follow news 

resources in which the dedicated team searches, 

prepares, and publishes the material. 

News resources shape people's worldview, but 

they can also manipulate their readers, covertly carry 

out campaigns to tune the audience against one or 

another political trend. Since the political leaning of 

the resource is difficult to determine
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independently sometimes, it is easy to fall into the 

filter bubble by it, which, in this period of time, is 

especially dangerous for life, because it is the people 

from the bubbles who are easily manipulated and 

can be called to various actions and protests. So, 

there is a need for a tool that will allow a thorough 

analysis of all publications of the resource and draw 

a conclusion about its political leaning. This, in turn, 

can help identify being isolated by a filter bubble. 

The basis of such a tool is the classification model of 

political leaning based on textual information. 

Thus, the purpose of this study is to solve the 

problem of classification of the political leaning of 

the text resource.  

The task of the study is to build a new 

classifier to improve the quality of political leaning 

classification of the social media texts in three 

languages, viz., Ukrainian, English and Russian, 

using natural language processing approach. 

The object of this study is political leaning 

classification. 

The subject of the study is methods of 

implementation of political leaning classification. 

1. LITERATURE REVIEW 

The scientometric database Scopus was used to 

search for scientific sources on the research topic. 

Scopus allows to form a query, which consists in ap-

plying various search functions, combining them with 

logical operators and other criteria. Thus, ten studies 

on the political leaning classification were selected. 

After that, a detailed review of each selected 

literary source was carried out. The main points that 

were paid attention to during the analysis were: the 

type of algorithm, whether there was a supervised or 

unsupervised learning, the algorithms that were used 

to solve the problem, vectorization methods, algo-

rithm comparison metrics and obtained results of the 

developed models. 

The summary of the methodologies used in the 

ten related works are given in Table 1. 

According to the table, it can be seen that the 

supervised methods were most often used for the 

classification of political leaning, they were used in 

all ten reviewed articles. Unsupervised methods 

were tested only in a study [10], but they failed to 

improve results. 

Regarding the methods themselves, it can be 

seen from the table that neural networks were ap-

plied in seven out of ten cases, of which five times 

showed the best results, which confirms the suitabil-

ity of using neural networks for the classification of 

political inclination. It should also be noted the pop-

ularity of testing the SVM method, it was used in six 

out of ten articles, but showed the best value of indi-

cators in only one, namely in [3]. It is also worth 

noting the performance of the pre-trained BERT 

model, it was applied in two studies, namely [4] and 

[8], and in both it showed the best metrics values. 

Table 1. Methodologies overview 

Work Methods Learning Metrics Vectorizations 

[1] LSTM, SVM, DTC, LR, RFC Supervised Precision, recall, F1-score TF-IDF 

[2] MLR, K-NN, DTC, RFC, 
SVM, MLP 

Supervised Accuracy, precision, recall, 
F1-score 

BoW, HV, TF, 
TF-IDF 

[3] SVM, K-NN, DTC, XGBoost, 
LR, NBC, RFC 

Supervised Accuracy, precision, recall, 
F1-score 

TF, TF-IDF 

[4] SVM, NN, CNN, BERT Supervised Accuracy, precision, recall TF-IDF, 
Word2Vec 
One-Hot,  

[5] FastText, TextCNN, HAN, R-
CNN 

Supervised Accuracy, precision, recall, 
F1-score 

- 

[6] FastText, TextCNN, HAN R-
CNN 

Supervised Precision, recall, F1-score - 

[7] RFC, SVM, Vanilla Deep 
Multi-Task, Attention Deep 
Multi-Task, Hierarchical At-
tention Deep Multi-Task  

Supervised F1-score 
 

- 

[8] CNN, BERT Supervised Accuracy, F1-score Word2Vec 

[9] K-NN Supervised Accuracy, precision, recall, 
F1-score 

TF-IDF 

[10] K-means, GaussianMixture, 
MeanShift, SVM 

Supervised and 
unsupervised 

Precision, recall, F1-score Word2Vec 

Source: compiled by the authors

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
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Regarding metrics, we can note the traditional 

set consisting of accuracy, precision, recall and F1-

score. Of the vectorization methods, the most popu-

lar in the conducted studies were TF-IDF and 

Word2Vec, TF-IDF vectorization was used in five 

out of ten articles, Word2Vec in three out of ten. 

Among the features of the research, we should 

note the work [1] and its evaluation of models on 

four feature vectors: TF, TF-IDF-unigram, TF-IDF-

bigram, TF-IDF-trigram. The study also calculated 

the training time, according to which it was deter-

mined that the random forest (RFC) learned 96 times 

faster than LSTM, 0.8587 seconds and 82.7816 sec-

onds, respectively. In addition, it is worth noting the 

article [2] and its testing of feature vectors formed 

on nouns, which helped the MLR and MLP models 

achieve the highest accuracy value of 89%. It is also 

necessary to highlight the research [3] and its classi-

fication experiments on a dataset with and without 

stop words. Thus, the maximum obtained accuracy 

was improved by almost 1 %. On the dataset with 

stop words, the SVM model achieved an accuracy of 

92.08 %, and without stop words, the XGBoost 

model demonstrated 92.82 %. Regarding the fea-

tures of the article [5], the comparison of the learn-

ing speed should be emphasized, according to which 

it was determined that the R-CNN model learned the 

fastest with the value of epochs equal to 9, followed 

by HAN at 16, then TextCNN at 24 and FastText at 

35 epochs. Among the features of the study [10], it 

is necessary to note the focus on solving the classifi-

cation problem using unsupervised learning methods. 

The highest macro precision value was 80% and was 

obtained by the MeanShift algorithm, but this result 

was surpassed by the SVM teacher training method 

with an achieved macro precision of 87%. 

2. RESEARCH METHODOLOGY  

2.1. Text preparation techniques 

Before modeling, the text goes through a prepa-

ration stage, during which various cleaning and 

modification operations take place. This is done to 

remove information that has little or no relevance to 

the modelling, such as punctuation. The main tech-

niques of text preparation are: tokenization, removal 

of stop words, stemming, lemmatization and selec-

tion of parts of speech, work with the frequency of 

occurrence of words in the text [11]. 

Tokenization is the process of breaking sen-

tences and paragraphs into smaller units, called to-

kens, which are easier to work with. Typically, to-

kens are obtained by separating sentences with spac-

es, but some libraries provide tools where the re-

ceived tokens are both words and punctuation marks. 

Stop word removal is the process of removing 

words that are considered uninformative. Depending 

on the language of the text, stop words may differ. 

Thus, in Ukrainian, stop words are, for example, “і”, 

«або» and «чи», in English, in turn, they are i.e. “a”, 

“an” and “the”. So, depending on which languages 

the text is made of, a list of stop words is formed by 

connecting the stop words of a specific language, 

after which the text is cleaned by checking whether 

the token is not in the formed list. 

Stemming is the process of reducing a word to 

its base by removing a suffix. Thus, words that mean 

the same thing, but are written differently due to the 

specifics of the language, will be reduced to one 

word. 

Lemmatization is a more complex approach to 

reducing a word to its base than stemming. The first 

step in this text preparation technique is to identify 

the part of speech of the word. Such information is 

very important and directly affects the correctness of 

the modification. Thus, knowing that “is” and “are” 

are verbs, they will be changed to “be”. In addition, 

lemmatization takes into account language excep-

tions, such as changing “better” to “good” and “chil-

dren” to “child”. 

To compare stemming and lemmatization, we 

may have an example of converting words such as 

“studies” and “studying”, after stemming we will get 

“studi” and “study”, and after lemmatization “study” 

and “study”, which is more grammatically correct. 

Determining the frequency of occurrence of 

words in a text is a process, the result of which is 

the value of occurrence of tokens in a dataset. This 

information can be further used to remove those 

words that occur very rarely and very often. Thus, 

the cleaning of uninformative words allows to re-

duce the number of features, which, in turn, affects 

the training time and the quality of the models. 

2.2. Vectorization methods 

For modeling, the cleaned text must be con-

verted into numbers. Vectorization allows such a 

conversion. There are many techniques, but Bag of 

Words, TF-IDF and Word2Vec can be highlighted. 

Bag of Words is a way of presenting text in the 

form of a vector of fixed length, which consists of 

values of the frequency of occurrence of words. To 

do this, first, a dictionary is defined, which contains 

all the unique words of the dataset. The size of the 

dictionary corresponds to the size of the final vector, 

since each word in the dictionary is a column by 

which the result is formed. Next, to convert the text 

into a vector, the frequency of occurrence will be 

calculated for each word. For example, if the dic-

tionary contains the words “the”, “bike”, “bus” and 
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“car”, then the text “the bike and the car” will be 

represented as [2,1,0,1], since “the” occurs in the 

text twice, “bike” and “car” once, and “bus” never. 

It is worth noting that Bag of Words shows what 

words are in the document, and not exactly where 

they are, that is, the place of words in the text is not 

saved. In addition, it should be noted that the fea-

tures of the vector can be not just words, but N-

grams, then, for example, for bigrams, the dictionary 

would contain the following features: “the bike”, 

“bike bus” and “bus car”. 

TF-IDF (term frequency – inverse document 

frequency) is a vectorization method that also has a 

dictionary, but the TF-IDF formula is used to deter-

mine the values in the vector. It consists of two parts, 

namely TF (term frequency) and IDF (inverse doc-

ument frequency) [12]. TF is the ratio of the fre-

quency of occurrence of a certain word in the text to 

the total number of words in the text.  

The TF formula is given below: 

 
𝑇𝐹 =  

𝑛𝑖

∑ 𝑛𝑘𝑘
, (1) 

where 𝑛𝑖 – the value of occurrences of the word in 

the text. 

IDF is the inverse of the frequency with which 

a certain word occurs in a corpus of texts. The IDF 

formula is given below: 

 
𝐼𝐷𝐹 =  log (

𝑁

𝑑𝑓𝑖
), (2) 

where 𝑁 – is the total number of corpus texts; 𝑑𝑓𝑖 – 

the number of texts containing a word. 

The final TF-IDF formula has the form: 𝑇𝐹 −
𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹, so words that appear more often 

in a certain document and less often in other docu-

ments of the corpus will have a greater TF-IDF val-

ue. Words that occur in all texts will have a zero 

value, since log (
𝑁

𝑁
) = log(1) = 0. 

Word2Vec is a vectorization method that uses 

a neural network model to learn associations be-

tween words in a text corpus. Thus, similar words 

will be next to each other in space. The dimensional-

ity of the space is determined by the total number of 

words or can be set manually, usually choosing a 

value between 100 and 1000. It is worth noting that 

Word2Vec allows us to get a vector for a specific 

word, however, to get a vector for the data row, we 

need to perform additional operations. Such opera-

tions can be the sum of vectors, mean of vectors, etc. 

So, a separate vector will be obtained for each word 

of the text, then a list of vectors will be formed, after 

which a certain operation will be applied to this list 

and the final representation vector will be obtained. 

It is worth noting that pre-trained vectorization 

models are also often used, which are presented in 

the form of a key-value, where the key is a word, 

and the value is the vector of this word. Training of 

such models is usually carried out on a large amount 

of data, which is especially useful when the size of 

the dataset is small and there is no possibility to train 

the vectorization model manually. 

2.3. Metrics for evaluating the performance of 

models 

Accuracy, macro F1-score, macro precision and 

macro recall were used to evaluate the performance 

of the classification models. 

2.4. Machine learning algorithms 

Support Vector Machines (SVM) are a family 

of supervised machine learning algorithms for solv-

ing classification and regression problems. SVM 

represents the rows of a dataset as points in space 

such that individual classes are separated by some 

plane that offers the largest gap between classes. The 

simplest version of SVM supports binary classifica-

tion, but modern SVMs allow multiclass classifica-

tion by dividing it into several binaries [13]. There 

are various SVM implementations for the classifica-

tion task, such as: Linear Support Vector Classifier 

(LinearSVC), Support Vector Classifier (SVC), Nu-

Support Vector Classifier (NuSVC), etc. They differ 

in kernel and other hyperparameters, as well as in 

their purpose, such as LinearSVC is recommended 

for use on large datasets, and SVC, on the contrary, 

on small ones, up to tens of thousands of records. 

Logistic Regression (LR) is a supervised ma-

chine learning algorithm for solving classification 

and regression problems. It is worth noting that the 

algorithm is widely used to perform binary classifi-

cations. The logic of the algorithm consists in calcu-

lating the probability that a row of data belongs to a 

certain class using a set of parameters, the value of 

which is determined by the maximum likelihood 

method, according to which such parameters are se-

lected that maximize the value of the likelihood 

function on the dataset. 

Decision Tree (DT) is a supervised machine 

learning algorithm used to solve classification and 

regression problems. The logic of the algorithm con-

sists in using features of the dataset to create yes/no 

questions, according to which the decision tree itself 

is built [14]. Thus, the leaves of the tree represent 

classes, and the branches represent the sequence of 

attribute values that led to this class. Decision trees 

are easy to interpret, but they are capable of overfit-

ting, especially when the constructed tree is very tall. 
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Random Forest (RF) is a supervised ensemble 

machine learning method for classification and re-

gression. Its logic consists in building a large num-

ber of decision trees and combining their results. 

Thus, a particular row of the dataset will be assigned 

the class that was classified by the majority of trees 

in the random forest. The advantage of this algo-

rithm compared to decision trees is more accurate 

predictions and less prone to overfitting. 

Naïve Bayes Classifier (NBC) is a family of 

probabilistic classifiers that use Bayes' theorem to 

determine the probability that a row of a dataset be-

longs to one of the classes. Depending on the as-

sumption about the distribution of features, there are 

different implementations of NBC, such as: Bernoul-

li Naïve Bayes Classifier (B-NBC), Multinomial 

Naïve Bayes Classifier (M-NBC), Gaussian Naïve 

Bayes Classifier (G-NBC), etc. [15]. In the case of 

B-NBC, the features are assumed to be distributed 

according to the Bernoulli distribution, in M-NBC 

according to the polynomial distribution, and in G-

NBC according to the normal distribution, also 

known as the Gaussian distribution. 

Extreme Gradient Boosting (XGBoost) is an 

ensemble machine learning method for solving clas-

sification and regression problems. XGBoost is an 

implementation of gradient boosting trees with some 

improvements, such as automatic feature selection, 

application of Newton's method for optimization, 

use of regularization to prevent overfitting, imple-

mentation of parallel tree construction, etc. [16]. Af-

ter winning various machine learning competitions, 

this method began to be widely used, integrated into 

all kinds of libraries and implemented in various 

programming languages. 

2.5. Hyperparameter optimization methods 

Models have parameters and hyperparameters, 

the difference between them is that the parameters 

are determined from the dataset during training, 

while the hyperparameters are fixed, they are set 

manually before training and actually help determine 

the values of the parameters. 

The model can have various hyperparameters, but 

choosing the best combination of them on your own 

usually takes a lot of time. That is why there are vari-

ous hyperparameter optimization techniques that help 

to determine such a combination that, for a certain 

model and dataset, shows the best results [17], [18]. 

For this work, grid search was used, which is 

considered one of the simplest. It accepts lists of 

values for each hyperparameter, then trains models 

with all possible combinations. Grid search is easy 

to understand, but quite time-consuming. 

2.6. Ensembles of models 

An ensemble of models is a supervised ma-

chine learning method that allows to combine multi-

ple models during training and making predictions. 

A single model can achieve certain results, however, 

if a combination of models is used, there is a chance 

to obtain improved metrics, which is the motivation 

behind the ensemble of models method. 

There are simple and complex types of ensem-

bles, the simple ones are max voting, averaging and 

weighted averaging, and the complex ones are bag-

ging, boosting, stacking, blending [19]. Stacking 

ensembles were used in this work. 

Stacking is an ensemble technique that uses 

model predictions to build a new model. The logic 

of stacking is to transform a dataset by training a list 

of models on it and using their predictions as new 

features. Let there be two models, then the stacking 

will look like this: first, the training data is divided 

into N parts, for example into five, then the first 

model is trained on four subsets and makes a predic-

tion on the fifth, this is repeated for all parts. After 

that, the first model is trained on the full set of train-

ing data and makes a prediction for the test data. A 

similar process for the second model. In this way, a 

dataset with two features that correspond to the pre-

dictions of the two models was obtained. The next 

step of stacking is the construction of the final model 

on the transformed dataset, which will make the fi-

nal predictions. In this example, the first two models 

are called base, or zero-level models, and the final 

model is called the meta-model, or first-level model. 

It is worth noting that the number of base models 

and metamodels, as well as the number of levels in 

stacking, can be arbitrary. 

2.7. Neural networks 

RNN (recurrent neural networks) is a neural 

network that, thanks to its architecture, allows to 

store the context, the so-called "short-term memory" 

[20]. In RNN, the result of the previous step comes 

to the input of the current one, which, in turn, passes 

its result on, which is the implementation of internal 

memory. Neural networks with context are particu-

larly useful when working with data in the form of 

sequences, such as text, where, for example, to pre-

dict the next words, information about the previous 

ones is critical. The disadvantage of RNNs is that 

they have a fairly short internal memory, which 

means that the data that was processed at the begin-

ning of the neural network has almost no effect on 

the result at the end. 

LSTM (long short-term memory networks) is a 

neural network that is considered an extension of 
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RNN. It has a more complex architecture, allowing 

it to store more context information. Thus, the neural 

network has the ability to determine and remember 

long-term dependencies between data [21]. 

CNN (convolutional neural network) is a neu-

ral network that is widely used to work with images. 

CNN is based on convolutional and aggregation lay-

ers [22]. The convolution layer performs a convolu-

tion operation on the image, thanks to which it is 

possible to reduce the number of parameters and 

highlight the most important features. The aggrega-

tion layer does something similar, but instead of a 

convolution operation, it applies a kernel, which se-

lects the value from the kernel that is defined by the 

strategy, it can be the maximum value, the average, 

etc. Despite the fact that the typical data format of 

CNN is an image, it is also able to work with text, to 

implement this, the text is converted into vectors of 

numbers, that is, vectorization is performed. 

BERT (bidirectional encoder representations 

from transformers) is a machine learning technique 

based on the architecture of the deep learning model 

transformer [23]. BERT is developed and widely 

used by Google. The original English-language 

BERT models, namely 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸  and 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 , 

were trained on a dataset of 800 million words and 

on the English Wikipedia with 2500 million words. 

There are many implementations of BERT, the dif-

ference between which is the dataset on which they 

were trained, it can be datasets of one language, it 

can be of many languages. In addition, there are var-

ious variations of the BERT architecture, such as: 

the DistilBert model, which contains 40% fewer pa-

rameters and is a 60% faster version of BERT, the 

RoBERTa model, which is an improved version of 

BERT, and many others [24], [25]. 

2.8. Balancing data techniques 

An unbalanced dataset is data in which the 

number of rows of one class significantly exceeds 

the number of rows of others. Since there are many 

problems where the classes of interest are precisely 

the minority classes, there are various ways of work-

ing with such datasets. There are three approaches, 

namely: oversampling; undersampling, hybrid [26]. 

Oversampling is an approach to working with 

unbalanced datasets, when the number of minority 

class rows is increased. Oversampling implementa-

tion methods are: Random Oversampling, SMOTE. 

Random Oversampling is a way of imple-

menting oversampling, in which minority rows are 

duplicated in order to balance the dataset. A charac-

teristic feature of this method is that the selection of 

lines is carried out randomly. 

SMOTE (Synthetic Minority Oversampling 

Technique) is an oversampling implementation 

method that, instead of duplicating, synthetically 

creates new rows of data that are similar to, but not a 

match to, existing minority classes. 

Undersampling is an approach to unbalanced 

data in which the number of rows in the majority 

class is reduced. The methods of implementing un-

dersampling include the following: Random Under-

sampling, Near-miss, Tomek links. 

Random Undersampling is a method of un-

dersampling in which the rows of the majority class 

to be removed are randomly selected. 

Near-miss is a way of implementing under-

sampling that works with the distribution of values 

in a dataset to determine which rows will be re-

moved for balancing. 

Tomek links is an undersampling method that 

uses so-called “Tomek links" to select data of the 

majority class to be removed. These links between 

data allow to identify rows of different classes that 

are similar to each other. Thus, after applying this 

method, in addition to balancing the data, noise is 

also eliminated. 

Hybrid is an approach that tries to combine 

oversampling and undersampling. Among the hybrid 

methods, it is worth highlighting SMOTETomek, 

which is a combination of the SMOTE oversampling 

approach and the Tomek links undersampling ap-

proach. Thus, using this method increases the dataset 

thanks to SMOTE and cleans it with the help of 

Tomek links. 

3. EXPERIMENTAL RESULTS 

3.1. Dataset 

The dataset contained messages from social 

media users regarding the events of the large-scale 

Russian invasion of Ukraine from February 24, 2022. 

It consisted of 13,000 records and 29 columns, from 

which it is worth highlighting “Text digest” and 

“Political view”, which are text information and the 

political view of the message, respectively. There 

are two possible values of the political view, namely: 

pro-Ukrainian, pro-Russian. 

It should be noted that the data sample con-

tained words from different languages, but a deci-

sion was made to focus on only three, namely: 

Ukrainian, English, and Russian, which affected fur-

ther processing. 

First, rows with empty values, duplicates, and 

outliers were removed, after which the text of the 

message, i.e., the “Text digest” column, was pro-

cessed using the following steps: 

1. Updating text to be in the lower case; 

2. Removal of links, hashtags and apostrophes; 
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3. Replacement of special characters, such as 

“ա” for “ш” and “ₚ” for “р”; 

  4. Splitting the text into tokens; 

5. Removal of punctuation characters, as well 

as short and long words, the length of which was 

less than three characters and more than 21 charac-

ters, respectively; 

6. Removal of tokens that are stop words of the 

Ukrainian, English or Russian languages; 

7. Removal of words that contained symbols 

that do not exist in the alphabets of the Ukrainian, 

English and Russian languages; 

8. Determining the language of a word using 

the Python library langdetect and removing tokens 

that are not Ukrainian, English or Russian; 

9. Depending on the language of the word, 

launching the corresponding tool, which, for a cer-

tain token, performs the definition of a part of the 

speech and, according to the received information, 

performs lemmatization on it; 

10. Repeating steps 1-6, since, since after lem-

matization, some words were transformed as “сімя” 

to “Сім’я” and “київ” to “Київ”. 

As a result, the size of the dataset became equal 

to 9358 records. 

3.2. Machine learning algorithms 

The problem of political leaning classification 
was solved using the following machine learning al-
gorithms: Linear Support Vector Classifier 
(LinearSVC), Support Vector Classifier (SVC), Nu-
Support Vector Classifier (NuSVC), Decision Tree 
Classifier (DTC), Random Forest Classifier (RFC), 
Bernoulli Naïve Bayes Classifier (B-NBC), Multino-
mial Naïve Bayes Classifier (M-NBC), Extreme Gra-
dient Boosting (XGBoost), Logistic Regression (LR). 

For each algorithm listed above, the search for 
the best hyperparameters was carried out using the 
grid search optimization method, which in the im-
plementation of the scikit-learn library includes k-

fold cross-validation with 𝑘 = 5 by default. The re-
sults of the models were evaluated by accuracy, 
macro F1-score, macro precision and macro recall. 

The scikit-learn and xgboost libraries contain-
ing LinearSVC, SVC, NuSVC, DTC, RFC, B-NBC, 
M-NBC, LR and XGBoost implementations were 
used, respectively [27], [28]. In addition to machine 
learning algorithms, hyperparameters were also 
searched for the vectorization methods. 

Thus, the search for the best hyperparameters of 
each of the nine algorithms was carried out in com-
bination with the search for the best hyperparameters 
of vectorization methods. The metrics for different 
algorithms are listed in Table2. 

According to the table, it can be noted that the 

vectorization of Word2Vec significantly showed 

worse performance than BoW and TF-IDF. The 

macro F1-score was defined as the metric used to 

determine the best model, as it allows demonstrating 

the model effectiveness across all classes. Thus, the 

LR algorithm with TF-IDF vectorization performed 

best, which achieved a macro F1-score value of 

0.7966. The second-best metric result of 0.7933 was 

also obtained using LR, but with the BoW vectoriza-

tion method. 

3.3. Neural networks 

Next, neural networks were used to solve the 

problem of political leaning classification. The first 

network was CNN #1 with the following architec-

ture: 

 Embedding layer, vector size is 300; 

 Conv1D layer, 32 filters, kernel size 3; 

 MaxPooling1D layer, kernel size 2; 

 Flatten layer; 

 Dense layer, 250 neurons, ReLU activation; 

 Dense layer, 1 neuron, sigmoid activation. 

After that, the neural network CNN #2 was de-

fined, which had the architecture: 

 Embedding layer, vector size equal to 200; 

 Conv1D layer, 128 filters, kernel size 5; 

 GlobalMaxPooling1D layer, kernel size 2; 

 Dense layer, 10 neurons, ReLU activation; 

 Dense layer, 1 neuron, sigmoid activation. 

Next, an LSTM neural network is built: 

 Embedding layer, vector size is 100; 

 Bi-LSTM layer, 64 neurons; 

 Dense layer, 32 neurons, ReLU activation; 

 Dense layer, 1 neuron, sigmoid activation. 

Then a neural network consisting of CNN and 

LSTM was defined: 

 Embedding layer, vector size is 100; 

 Conv1D layer, 64 filters, kernel size 3; 

 MaxPooling1D layer, kernel size 2; 

 LSTM layer, 100 neurons; 

 Dense layer, 64 neurons, ReLU activation; 

 Dense layer, 1 neuron, sigmoid activation. 

After that, two neural networks were tested us-

ing BERT. DistilBERT base multilingual and XLM-

RoBERTa from the Hugging Face service were used 

[29], [30]. The choice of these models is justified by 

their training on texts of more than one hundred lan-

guages. Both networks had the following architec-

ture: 

 BERT layer; 

 Dense layer, 1 neuron, sigmoid activation. 
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Table 2. Results of machine learning algorithms 

Algorithm Vectorization Accuracy F1-score Precision Recall 

LinearSVC BoW 0.9214 0.7813 0.799 0.7664 

TF-IDF 0.8719 0.7459 0.7075 0.8355 

Word2Vec 0.6846 0.569 0.5926 0.7287 

SVC BoW 0.9228 0.7656 0.8185 0.7314 

TF-IDF 0.9275 0.7918 0.8231 0.7679 

Word2Vec 0.823 0.5289 0.5294 0.5287 

NuSVC BoW 0.9211 0.7458 0.825 0.7039 

TF-IDF 0.9243 0.7754 0.8177 0.7459 

Word2Vec 0.8963 0.6724 0.7203 0.6463 

DTC BoW 0.8987 0.71 0.7332 0.6928 

TF-IDF 0.8979 0.7024 0.7288 0.6836 

Word2Vec 0.8256 0.5614 0.5589 0.5646 

RFC BoW 0.8806 0.7409 0.7099 0.7962 

TF-IDF 0.8925 0.7527 0.7269 0.7915 

Word2Vec 0.8958 0.5707 0.7212 0.5547 

B-NBC BoW 0.8763 0.7263 0.699 0.7726 

TF-IDF 0.8763 0.7263 0.699 0.7726 

Word2Vec 0.8658 0.6295 0.6363 0.6239 

M-NBC BoW 0.9238 0.7855 0.8072 0.7678 

TF-IDF 0.9065 0.7689 0.7547 0.7861 

XGBoost BoW 0.9235 0.7431 0.8502 0.694 

TF-IDF 0.9203 0.7312 0.8342 0.6848 

Word2Vec 0.8988 0.5374 0.8294 0.5338 

LR BoW 0.9245 0.7933 0.8059 0.7824 

TF-IDF 0.9226 0.7966 0.7963 0.7971 

Word2Vec 0.7642 0.5986 0.6 0.6827 
Source: compiled by the authors

The performance metrics for different types of 

neural networks are shown in Table3. 

According to the Table 3, it is possible to note 

the disappointing results of neural networks with 

BERT, as XLM RoBERTa showed a macro F1-

score equal to 0.48, and DistilBERT 0.69, which are 

the worst values. The best result was obtained by 

CNN #2 and LSTM neural networks with an F1-

score value of 0.76. 

3.4. Working with unbalanced data 

Since the dataset contains 88.8% of pro-

Ukrainian records and 11.2% of pro-Russian records, 

it can be concluded that the classes of the dataset are 

unbalanced. This was the reason for testing methods 

of working with unbalanced data such as Random 

Oversampling, Random Undersampling, SMOTE 

and SMOTETomek. These techniques were applied 

together with the best LR and SVC machine learning 

algorithms and BoW and TF-IDF vectorizations in 

the grid search hyperparameter optimization method. 

The performance metrics for different models after 

data balancing are given in Table 4. 

 

Table 3. Results of neural networks 

Neural network Accuracy F1-score Precision Recall 

CNN #1 0.9 0.75 0.75 0.75 

CNN #2 0.92 0.76 0.84 0.72 

LSTM 0.91 0.76 0.78 0.75 

CNN і LSTM 0.91 0.75 0.77 0.73 

DistilBERT base multilingual 0.91 0.69 0.87 0.64 

XLM RoBERTa 0.89 0.48 0.94 0.5 
Source: compiled by the authors

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
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Table 4. Results of applying data balancing techniques 

Model Accuracy F1-score Precision Recall 

LR, TF-IDF, Random Oversampling 0.9213 0.7908 0.8104 0.7755 

LR, TF-IDF, Random Undersampling 0.8158 0.6963 0.6689 0.8268 

LR, TF-IDF, SMOTE 0.9222 0.794 0.8118 0.7797 

LR, TF-IDF, SMOTETomek 0.9217 0.7933 0.8106 0.7794 

SVC, TF-IDF, Random Oversampling 0.919 0.7833 0.8039 0.767 

SVC, BoW, Random Undersampling 0.8265 0.704 0.6737 0.8229 

SVC, TF-IDF, SMOTE 0.9191 0.7837 0.8042 0.7675 

SVC, TF-IDF, SMOTETomek 0.9191 0.7837 0.8042 0.7675 
Source: compiled by the authors

According to the table, it can be noted that the 
implementation of data balancing did not improve 
the results of the algorithms, but only reduced them 
by 1-2% according to the macro F1-score. However, 
it is worth highlighting the application of SMOTE, 
which demonstrated the best F1-score metric value 
of 0.794, which was only 0.2% less than the 
achieved LR result with TF-IDF without SMOTE. 

3.5. Ensembles of models 

The next step was to create stacking ensembles 
of models using the best machine learning algo-
rithms. With the help of grid search, the combination 
of the vectorizations, its hyperparameters, basic 
models, and meta-models was sorted out to find the 
combination that would demonstrate the best metrics 
values. The architecture of the constructed ensem-

bles is summarized in Table5, while the performance 
metrics for these ensembles are listed in Table 6. 

It can be seen from Table 6 that the best result 
of macro F1-score equal to 0.7966 was achieved by 
two ensembles stacking #3 and stacking #5. The 
next step in working with the ensembles was to try 
to improve the results of the models by testing dif-
ferent combinations of metamodel hyperparameters. 
The obtained results are presented in Table7. 

According to Table 7, it can be noted that it was 
possible to improve only the metrics values of stack-
ing #6, but not stacking #5. Accordingly, it can be 
noted that the achieved macro F1-score value equal 
to 0.7966 by ensembles of models corresponds to the 
best value of machine learning algorithms, namely 
the result from the LR model with TF-IDF. 

Table 5. Ensembles of models 

Name of ensemble Vectorization Base models Meta-model 

Stacking #1 BoW LinearSVC, M-NBC, LR B-NBC 

Stacking #2 BoW LinearSVC, LR B-NBC 

Stacking #3 TF-IDF SVC, NuSVC, LR B-NBC 

Stacking #4 TF-IDF SVC, NuSVC, LR LinearSVC 

Stacking #5 TF-IDF SVC, LR B-NBC 

Stacking #6 TF-IDF SVC, LR SVC 

Stacking #7 TF-IDF SVC, LR LinearSVC 
Source: compiled by the authors 

Table 6. Results of ensembles of models 

Ensemble Accuracy F1-score Precision Recall 

Stacking #1 0.9217 0.7902 0.811 0.7732 

Stacking #2 0.9119 0.7804 0.7786 0.7828 

Stacking #3 0.9246 0.7966 0.822 0.7769 

Stacking #4 0.9261 0.7848 0.8428 0.748 

Stacking #5 0.9246 0.7966 0.822 0.7769 

Stacking #6 0.9179 0.7924 0.795 0.7909 
Source: compiled by the authors

Table 7. Results of an attempt to improve model ensembles 

Ensemble Accuracy F1-score Precision Recall 

Stacking #5 0.9246 0.7966 0.822 0.7769 

Stacking #6 0.9175 0.7931 0.7932 0.7938 
Source: compiled by the authors

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
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CONCLUSIONS 

Therefore, in this study, the existing solutions 

to the problem of political leaning classification 

were analyzed, and then machine learning algo-

rithms, neural networks, and techniques for working 

with unbalanced data, vectorization methods, and 

ensembles of models were used to solve the problem. 

Among the machine learning algorithms, the best 

results were demonstrated by SVC and LR with 

BoW and TF-IDF vectorizations. The Word2Vec 

vectorization method, in turn, was worse than BoW 

and TF-IDF for all algorithms. The highest macro 

F1-score value of 0.7966 was achieved by the LR 

with TF-IDF vectorization, followed by 0.7933 from 

algorithm LR with BoW and 0.7918 from SVC with 

TF-IDF. 

After that, there was an attempt to solve this 

problem with CNN, LSTM and BERT neural net-

works. The largest macro F1-score value of 0.76 was 

obtained by CNN and LSTM networks. Regarding 

BERT, the values achieved by the two networks of 

0.69 and 0.48 were the lowest among neural net-

works. Thus, it can be concluded that machine learn-

ing algorithms coped better with this task compared 

to neural networks, as they demonstrated higher re-

sults by 2-3%. 

In addition, since the dataset was unbalanced, 

various data balancing techniques were tested with 

the best machine learning algorithms. However, the 

results did not improve and remained at the same 

level. The highest macro F1-score value of 0.794 

was achieved using LR with TF-IDF and SMOTE. 

Next, stacking ensembles of models were creat-

ed from BoW and TF-IDF vectorizations and the 

best machine learning algorithms. The largest macro 

F1-score value of 0.7966 was achieved by two en-

sembles with TF-IDF vectorization, B-NBC meta-

model and SVC, NuSVC, LR and SVC, LR base 

models, respectively. This was followed by a search 

for the best hyperparameters of the metamodel for 

some ensembles with the aim of metrics values im-

provement, but it was not possible to obtain a higher 

value of the macro F1-score. 

Thus, by combining the existing solutions to the 

problem, three new classifiers were built, the LR 

machine learning algorithm and two ensembles of 

models, which demonstrated the largest value of the 

macro F1-score equal to 0.7966 and coped best with 

the task of political leaning classification. 

Options for future experiments to improve re-

sults may include creating new ensembles, testing 

other machine learning algorithms, vectorizations, 

more complex neural networks, data balancing tech-

niques, pre-trained models. In addition, different da-

taset preprocessing techniques can be testes, such as 

the use of various stemming and lemmatization algo-

rithms, the creation of a dataset with only nouns, with 

nouns and verbs, with only Ukrainian words, etc. 
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АНОТАЦІЯ 

У цій статті здійснюється розв’язання задачі класифікації політичної забарвленості текстового ресурсу. Спочатку ви-

конано детальний аналіз десяти досліджень за темою роботи у вигляді порівняльної характеристики інструментарію. Літе-

ратурні джерела порівнювались за методами розв’язання задач, здійсненим навчанням, метриками оцінки та способами век-

торизації. Таким чином визначено, що для розв’язання задачі найчастіше використовувались алгоритми машинного навчан-

ня та нейронні мережі, а також способи представлення ознак TF-IDF та Word2Vec. Далі було побудовано різноманітні моде-

лі класифікації того, чи текстова інформація є проукраїнською, чи проросійською на основі набору даних, що містив пові-

домлення користувачів соціальних мереж про події широкомасштабного російського вторгнення в Україну з 24 лютого 2022 

року. Розв’язання задачі здійснювалось за допомогою алгоритмів машинного навчання Support Vector Machines, Decision 

Tree, Random Forest, Naïve Bayes classifier, eXtreme Gradient Boosting та Logistic Regression, нейронних мереж Convolutional 

Neural Networks, Long short-term memory та BERT, технік роботи з незбалансованими даними Random Oversampling, Random 

Undersampling, SMOTE та SMOTETomek, а також ансамблів моделей stacking. З алгоритмів машинного навчання найкраще 

впорався LR, який продемонстрував значення макро F1-міри рівне 0.7966, коли ознаки були перетворені векторизацією TF-

IDF, а коли BoW – 0.7933. З нейронних мереж найкраще значення макро F1-міри рівне 0.76 отримано за допомогою CNN та 

LSTM. Застосуванням технік балансування даних не вдалося покращити результати алгоритмів машинного навчання. Далі 

були визначені ансамблі моделей, які складались з алгоритмів машинного навчання. Двома з побудованих ансамблів було 

досягнуто те ж значення макро F1-міри 0.7966, що і за допомогою LR. Ансамблі, яким вдалося це зробити, складались з 

векторизації TF-IDF, метамоделі B-NBC та базових моделей SVC, NuSVC LR і SVC, LR відповідно. Таким чином три кла-

сифікатори, алгоритм машинного навчання LR та два ансамблі моделей, які були визначені шляхом здійснення комбінації 

наявних способів розв’язання задачі класифікації політичної забарвленості текстового ресурсу, продемонстрували найбіль-

ше значення макро F1-міри 0.7966. Отримані моделі можуть бути використані для детального огляду різних новинних ви-

дань за характеристикою політичної забарвленості, інформація про що може допомогти ідентифікувати перебування в інфо-

рмаційній бульбашці. 
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