
Kosiv Yu. A., Yakovyna V. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and

systems analysis
 359

DOI: https://doi.org/10.15276/aait.05.2022.24
UDC 004.912

Three language political leaning text classification using

natural language processing methods
Yurii A. Kosiv1)

 ORCID: https://orcid.org/0000-0001-7412-2025; yurii.kosiv.mknssh.2021@lpnu.ua
Vitaliy S. Yakovyna1)

ORCID: https://orcid.org/0000-0003-0133-8591; vitaliy.s.yakovyna@lpnu.ua. Scopus Author ID: 6602569305
1) Lviv Polytechnic National University, 12, Bandery Str. Lviv, 79013, Ukraine

ABSTRACT

In this article, the problem of political leaning classification of the text resource is solved. First, a detailed analysis of ten stud-

ies on the work’s topic was performed in the form of comparative characteristics of the used methodologies. Literary sources were

compared according to the problem-solving methods, the learning that was carried out, the evaluation metrics, and according to the

vectorizations. Thus, it was determined that machine learning algorithms and neural networks, as well as vectorization methods TF-

IDF and Word2Vec, were most often used to solve the problem. Next, various classification models of whether textual information is

pro-Ukrainian or pro-Russian were built based on a dataset containing messages from social media users about the events of the

large-scale Russian invasion of Ukraine from February 24, 2022. The problem was solved with the help of Support Vector Machines,

Decision Tree, Random Forest, Naïve Bayes classifier, eXtreme Gradient Boosting and Logistic Regression machine learning algo-

rithms, Convolutional Neural Networks, Long short-term memory and BERT neural networks, techniques for working with unbal-

anced data Random Oversampling, Random Undersampling , SMOTE and SMOTETomek, as well as stacking ensembles of models.

Among the machine learning algorithms, LR performed best, showing a macro F1-score value of 0.7966 when features were trans-

formed by TF-IDF vectorization and 0.7933 when BoW. Among neural networks, the best macro F1-score value of 0.76 was ob-

tained using CNN and LSTM. Applying data balancing techniques failed to improve the results of machine learning algorithms.

Next, ensembles of models from machine learning algorithms were determined. Two of the constructed ensembles achieved the same

macro F1-score value of 0.7966 as with LR. Ensembles that was able to do so consisted of the TF-IDF vectorization, the B-NBC

meta-model, and the SVC, NuSVC LR, and SVC, LR base models, respectively. Thus, three classifiers, the LR machine learning

algorithm and two ensembles of models, which were defined as a combination of existing methods of solving the problem, demon-

strated the largest macro F1-score value of 0.7966. The obtained models can be used for a detailed review of various news publica-

tions according to the political leaning characteristic, information about which can help people identify being isolated by a filter

bubble.

Keywords: Text classification; political leaning; machine learning algorithms; neural networks; ensembles of models; natural

language processing.

Copyright © Odessa Polytechnic National University, 2022. All rights reserved

For citation: Kosiv Y. A., Yakovyna V. S. “Three language political leaning text classification using natural language processing meth-

ods”. Applied Aspects of Information Technology. 2022; Vol.5 No.4: 359–370. DOI: https://doi.org/10.15276/aait.05.2022.24

INTRODUCTION.

FORMULATION OF THE PROBLEM

The Internet, social networks and messengers

have become an integral part of human life. There

are thousands of news resources, thousands of pages

in social networks that publish various news. It is

physically impossible to monitor all the available

sources, so a small part of the resources is selected,

from which the world is known.

When a person follows certain news resources,

recommendation systems suggest similar ones. In

this way, the number of sources that a person

follows increases, and the risk of falling into a filter

bubble also increases. A filter bubble is when a

person consumes information one-sidedly, because

the resources they follow are similar, and they share

© Kosiv Y., Yakovyna V., 2022

the same point of view, political trend or position. In

this way, a person is isolated from other points of

view, opinions, etc.

It is worth noting the role of news resources in

the modern world as a whole. Now is an interesting

and at the same time difficult time, there are

pandemics, wars, crises, Russia still exists, which

has always been and always remains a threat to the

civilized world. Thus, it is clear that it is not

physically possible to search for all the primary

sources on your own due to the large number of

events. Because of this people begin to follow news

resources in which the dedicated team searches,

prepares, and publishes the material.

News resources shape people's worldview, but

they can also manipulate their readers, covertly carry

out campaigns to tune the audience against one or

another political trend. Since the political leaning of

the resource is difficult to determine

This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/3.0)

https://doi.org/#_blank
https://orcid.org/0000-0001-7412-2025
mailto:yurii.kosiv.mknssh.2021@lpnu.ua
https://doi.org/

Kosiv Yu. A., Yakovyna V. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

360

Software engineering and

systems analysis
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

independently sometimes, it is easy to fall into the

filter bubble by it, which, in this period of time, is

especially dangerous for life, because it is the people

from the bubbles who are easily manipulated and

can be called to various actions and protests. So,

there is a need for a tool that will allow a thorough

analysis of all publications of the resource and draw

a conclusion about its political leaning. This, in turn,

can help identify being isolated by a filter bubble.

The basis of such a tool is the classification model of

political leaning based on textual information.

Thus, the purpose of this study is to solve the

problem of classification of the political leaning of

the text resource.

The task of the study is to build a new

classifier to improve the quality of political leaning

classification of the social media texts in three

languages, viz., Ukrainian, English and Russian,

using natural language processing approach.

The object of this study is political leaning

classification.

The subject of the study is methods of

implementation of political leaning classification.

1. LITERATURE REVIEW

The scientometric database Scopus was used to

search for scientific sources on the research topic.

Scopus allows to form a query, which consists in ap-

plying various search functions, combining them with

logical operators and other criteria. Thus, ten studies

on the political leaning classification were selected.

After that, a detailed review of each selected

literary source was carried out. The main points that

were paid attention to during the analysis were: the

type of algorithm, whether there was a supervised or

unsupervised learning, the algorithms that were used

to solve the problem, vectorization methods, algo-

rithm comparison metrics and obtained results of the

developed models.

The summary of the methodologies used in the

ten related works are given in Table 1.

According to the table, it can be seen that the

supervised methods were most often used for the

classification of political leaning, they were used in

all ten reviewed articles. Unsupervised methods

were tested only in a study [10], but they failed to

improve results.

Regarding the methods themselves, it can be

seen from the table that neural networks were ap-

plied in seven out of ten cases, of which five times

showed the best results, which confirms the suitabil-

ity of using neural networks for the classification of

political inclination. It should also be noted the pop-

ularity of testing the SVM method, it was used in six

out of ten articles, but showed the best value of indi-

cators in only one, namely in [3]. It is also worth

noting the performance of the pre-trained BERT

model, it was applied in two studies, namely [4] and

[8], and in both it showed the best metrics values.

Table 1. Methodologies overview

Work Methods Learning Metrics Vectorizations

[1] LSTM, SVM, DTC, LR, RFC Supervised Precision, recall, F1-score TF-IDF

[2] MLR, K-NN, DTC, RFC,
SVM, MLP

Supervised Accuracy, precision, recall,
F1-score

BoW, HV, TF,
TF-IDF

[3] SVM, K-NN, DTC, XGBoost,
LR, NBC, RFC

Supervised Accuracy, precision, recall,
F1-score

TF, TF-IDF

[4] SVM, NN, CNN, BERT Supervised Accuracy, precision, recall TF-IDF,
Word2Vec
One-Hot,

[5] FastText, TextCNN, HAN, R-
CNN

Supervised Accuracy, precision, recall,
F1-score

-

[6] FastText, TextCNN, HAN R-
CNN

Supervised Precision, recall, F1-score -

[7] RFC, SVM, Vanilla Deep
Multi-Task, Attention Deep
Multi-Task, Hierarchical At-
tention Deep Multi-Task

Supervised F1-score

-

[8] CNN, BERT Supervised Accuracy, F1-score Word2Vec

[9] K-NN Supervised Accuracy, precision, recall,
F1-score

TF-IDF

[10] K-means, GaussianMixture,
MeanShift, SVM

Supervised and
unsupervised

Precision, recall, F1-score Word2Vec

Source: compiled by the authors

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC

Kosiv Yu. A., Yakovyna V. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and

systems analysis
361

Regarding metrics, we can note the traditional

set consisting of accuracy, precision, recall and F1-

score. Of the vectorization methods, the most popu-

lar in the conducted studies were TF-IDF and

Word2Vec, TF-IDF vectorization was used in five

out of ten articles, Word2Vec in three out of ten.

Among the features of the research, we should

note the work [1] and its evaluation of models on

four feature vectors: TF, TF-IDF-unigram, TF-IDF-

bigram, TF-IDF-trigram. The study also calculated

the training time, according to which it was deter-

mined that the random forest (RFC) learned 96 times

faster than LSTM, 0.8587 seconds and 82.7816 sec-

onds, respectively. In addition, it is worth noting the

article [2] and its testing of feature vectors formed

on nouns, which helped the MLR and MLP models

achieve the highest accuracy value of 89%. It is also

necessary to highlight the research [3] and its classi-

fication experiments on a dataset with and without

stop words. Thus, the maximum obtained accuracy

was improved by almost 1 %. On the dataset with

stop words, the SVM model achieved an accuracy of

92.08 %, and without stop words, the XGBoost

model demonstrated 92.82 %. Regarding the fea-

tures of the article [5], the comparison of the learn-

ing speed should be emphasized, according to which

it was determined that the R-CNN model learned the

fastest with the value of epochs equal to 9, followed

by HAN at 16, then TextCNN at 24 and FastText at

35 epochs. Among the features of the study [10], it

is necessary to note the focus on solving the classifi-

cation problem using unsupervised learning methods.

The highest macro precision value was 80% and was

obtained by the MeanShift algorithm, but this result

was surpassed by the SVM teacher training method

with an achieved macro precision of 87%.

2. RESEARCH METHODOLOGY

2.1. Text preparation techniques

Before modeling, the text goes through a prepa-

ration stage, during which various cleaning and

modification operations take place. This is done to

remove information that has little or no relevance to

the modelling, such as punctuation. The main tech-

niques of text preparation are: tokenization, removal

of stop words, stemming, lemmatization and selec-

tion of parts of speech, work with the frequency of

occurrence of words in the text [11].

Tokenization is the process of breaking sen-

tences and paragraphs into smaller units, called to-

kens, which are easier to work with. Typically, to-

kens are obtained by separating sentences with spac-

es, but some libraries provide tools where the re-

ceived tokens are both words and punctuation marks.

Stop word removal is the process of removing

words that are considered uninformative. Depending

on the language of the text, stop words may differ.

Thus, in Ukrainian, stop words are, for example, “і”,

«або» and «чи», in English, in turn, they are i.e. “a”,

“an” and “the”. So, depending on which languages

the text is made of, a list of stop words is formed by

connecting the stop words of a specific language,

after which the text is cleaned by checking whether

the token is not in the formed list.

Stemming is the process of reducing a word to

its base by removing a suffix. Thus, words that mean

the same thing, but are written differently due to the

specifics of the language, will be reduced to one

word.

Lemmatization is a more complex approach to

reducing a word to its base than stemming. The first

step in this text preparation technique is to identify

the part of speech of the word. Such information is

very important and directly affects the correctness of

the modification. Thus, knowing that “is” and “are”

are verbs, they will be changed to “be”. In addition,

lemmatization takes into account language excep-

tions, such as changing “better” to “good” and “chil-

dren” to “child”.

To compare stemming and lemmatization, we

may have an example of converting words such as

“studies” and “studying”, after stemming we will get

“studi” and “study”, and after lemmatization “study”

and “study”, which is more grammatically correct.

Determining the frequency of occurrence of

words in a text is a process, the result of which is

the value of occurrence of tokens in a dataset. This

information can be further used to remove those

words that occur very rarely and very often. Thus,

the cleaning of uninformative words allows to re-

duce the number of features, which, in turn, affects

the training time and the quality of the models.

2.2. Vectorization methods

For modeling, the cleaned text must be con-

verted into numbers. Vectorization allows such a

conversion. There are many techniques, but Bag of

Words, TF-IDF and Word2Vec can be highlighted.

Bag of Words is a way of presenting text in the

form of a vector of fixed length, which consists of

values of the frequency of occurrence of words. To

do this, first, a dictionary is defined, which contains

all the unique words of the dataset. The size of the

dictionary corresponds to the size of the final vector,

since each word in the dictionary is a column by

which the result is formed. Next, to convert the text

into a vector, the frequency of occurrence will be

calculated for each word. For example, if the dic-

tionary contains the words “the”, “bike”, “bus” and

Kosiv Y., Yakovyna V. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

362 Software engineering and

systems analysis
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

“car”, then the text “the bike and the car” will be

represented as [2,1,0,1], since “the” occurs in the

text twice, “bike” and “car” once, and “bus” never.

It is worth noting that Bag of Words shows what

words are in the document, and not exactly where

they are, that is, the place of words in the text is not

saved. In addition, it should be noted that the fea-

tures of the vector can be not just words, but N-

grams, then, for example, for bigrams, the dictionary

would contain the following features: “the bike”,

“bike bus” and “bus car”.

TF-IDF (term frequency – inverse document

frequency) is a vectorization method that also has a

dictionary, but the TF-IDF formula is used to deter-

mine the values in the vector. It consists of two parts,

namely TF (term frequency) and IDF (inverse doc-

ument frequency) [12]. TF is the ratio of the fre-

quency of occurrence of a certain word in the text to

the total number of words in the text.

The TF formula is given below:

𝑇𝐹 =

𝑛𝑖

∑ 𝑛𝑘𝑘
, (1)

where 𝑛𝑖 – the value of occurrences of the word in

the text.

IDF is the inverse of the frequency with which

a certain word occurs in a corpus of texts. The IDF

formula is given below:

𝐼𝐷𝐹 = log (

𝑁

𝑑𝑓𝑖
), (2)

where 𝑁 – is the total number of corpus texts; 𝑑𝑓𝑖 –

the number of texts containing a word.

The final TF-IDF formula has the form: 𝑇𝐹 −
𝐼𝐷𝐹 = 𝑇𝐹 ∗ 𝐼𝐷𝐹, so words that appear more often

in a certain document and less often in other docu-

ments of the corpus will have a greater TF-IDF val-

ue. Words that occur in all texts will have a zero

value, since log (
𝑁

𝑁
) = log(1) = 0.

Word2Vec is a vectorization method that uses

a neural network model to learn associations be-

tween words in a text corpus. Thus, similar words

will be next to each other in space. The dimensional-

ity of the space is determined by the total number of

words or can be set manually, usually choosing a

value between 100 and 1000. It is worth noting that

Word2Vec allows us to get a vector for a specific

word, however, to get a vector for the data row, we

need to perform additional operations. Such opera-

tions can be the sum of vectors, mean of vectors, etc.

So, a separate vector will be obtained for each word

of the text, then a list of vectors will be formed, after

which a certain operation will be applied to this list

and the final representation vector will be obtained.

It is worth noting that pre-trained vectorization

models are also often used, which are presented in

the form of a key-value, where the key is a word,

and the value is the vector of this word. Training of

such models is usually carried out on a large amount

of data, which is especially useful when the size of

the dataset is small and there is no possibility to train

the vectorization model manually.

2.3. Metrics for evaluating the performance of

models

Accuracy, macro F1-score, macro precision and

macro recall were used to evaluate the performance

of the classification models.

2.4. Machine learning algorithms

Support Vector Machines (SVM) are a family

of supervised machine learning algorithms for solv-

ing classification and regression problems. SVM

represents the rows of a dataset as points in space

such that individual classes are separated by some

plane that offers the largest gap between classes. The

simplest version of SVM supports binary classifica-

tion, but modern SVMs allow multiclass classifica-

tion by dividing it into several binaries [13]. There

are various SVM implementations for the classifica-

tion task, such as: Linear Support Vector Classifier

(LinearSVC), Support Vector Classifier (SVC), Nu-

Support Vector Classifier (NuSVC), etc. They differ

in kernel and other hyperparameters, as well as in

their purpose, such as LinearSVC is recommended

for use on large datasets, and SVC, on the contrary,

on small ones, up to tens of thousands of records.

Logistic Regression (LR) is a supervised ma-

chine learning algorithm for solving classification

and regression problems. It is worth noting that the

algorithm is widely used to perform binary classifi-

cations. The logic of the algorithm consists in calcu-

lating the probability that a row of data belongs to a

certain class using a set of parameters, the value of

which is determined by the maximum likelihood

method, according to which such parameters are se-

lected that maximize the value of the likelihood

function on the dataset.

Decision Tree (DT) is a supervised machine

learning algorithm used to solve classification and

regression problems. The logic of the algorithm con-

sists in using features of the dataset to create yes/no

questions, according to which the decision tree itself

is built [14]. Thus, the leaves of the tree represent

classes, and the branches represent the sequence of

attribute values that led to this class. Decision trees

are easy to interpret, but they are capable of overfit-

ting, especially when the constructed tree is very tall.

Kosiv Y., Yakovyna V. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and

systems analysis
363

Random Forest (RF) is a supervised ensemble

machine learning method for classification and re-

gression. Its logic consists in building a large num-

ber of decision trees and combining their results.

Thus, a particular row of the dataset will be assigned

the class that was classified by the majority of trees

in the random forest. The advantage of this algo-

rithm compared to decision trees is more accurate

predictions and less prone to overfitting.

Naïve Bayes Classifier (NBC) is a family of

probabilistic classifiers that use Bayes' theorem to

determine the probability that a row of a dataset be-

longs to one of the classes. Depending on the as-

sumption about the distribution of features, there are

different implementations of NBC, such as: Bernoul-

li Naïve Bayes Classifier (B-NBC), Multinomial

Naïve Bayes Classifier (M-NBC), Gaussian Naïve

Bayes Classifier (G-NBC), etc. [15]. In the case of

B-NBC, the features are assumed to be distributed

according to the Bernoulli distribution, in M-NBC

according to the polynomial distribution, and in G-

NBC according to the normal distribution, also

known as the Gaussian distribution.

Extreme Gradient Boosting (XGBoost) is an

ensemble machine learning method for solving clas-

sification and regression problems. XGBoost is an

implementation of gradient boosting trees with some

improvements, such as automatic feature selection,

application of Newton's method for optimization,

use of regularization to prevent overfitting, imple-

mentation of parallel tree construction, etc. [16]. Af-

ter winning various machine learning competitions,

this method began to be widely used, integrated into

all kinds of libraries and implemented in various

programming languages.

2.5. Hyperparameter optimization methods

Models have parameters and hyperparameters,

the difference between them is that the parameters

are determined from the dataset during training,

while the hyperparameters are fixed, they are set

manually before training and actually help determine

the values of the parameters.

The model can have various hyperparameters, but

choosing the best combination of them on your own

usually takes a lot of time. That is why there are vari-

ous hyperparameter optimization techniques that help

to determine such a combination that, for a certain

model and dataset, shows the best results [17], [18].

For this work, grid search was used, which is

considered one of the simplest. It accepts lists of

values for each hyperparameter, then trains models

with all possible combinations. Grid search is easy

to understand, but quite time-consuming.

2.6. Ensembles of models

An ensemble of models is a supervised ma-

chine learning method that allows to combine multi-

ple models during training and making predictions.

A single model can achieve certain results, however,

if a combination of models is used, there is a chance

to obtain improved metrics, which is the motivation

behind the ensemble of models method.

There are simple and complex types of ensem-

bles, the simple ones are max voting, averaging and

weighted averaging, and the complex ones are bag-

ging, boosting, stacking, blending [19]. Stacking

ensembles were used in this work.

Stacking is an ensemble technique that uses

model predictions to build a new model. The logic

of stacking is to transform a dataset by training a list

of models on it and using their predictions as new

features. Let there be two models, then the stacking

will look like this: first, the training data is divided

into N parts, for example into five, then the first

model is trained on four subsets and makes a predic-

tion on the fifth, this is repeated for all parts. After

that, the first model is trained on the full set of train-

ing data and makes a prediction for the test data. A

similar process for the second model. In this way, a

dataset with two features that correspond to the pre-

dictions of the two models was obtained. The next

step of stacking is the construction of the final model

on the transformed dataset, which will make the fi-

nal predictions. In this example, the first two models

are called base, or zero-level models, and the final

model is called the meta-model, or first-level model.

It is worth noting that the number of base models

and metamodels, as well as the number of levels in

stacking, can be arbitrary.

2.7. Neural networks

RNN (recurrent neural networks) is a neural

network that, thanks to its architecture, allows to

store the context, the so-called "short-term memory"

[20]. In RNN, the result of the previous step comes

to the input of the current one, which, in turn, passes

its result on, which is the implementation of internal

memory. Neural networks with context are particu-

larly useful when working with data in the form of

sequences, such as text, where, for example, to pre-

dict the next words, information about the previous

ones is critical. The disadvantage of RNNs is that

they have a fairly short internal memory, which

means that the data that was processed at the begin-

ning of the neural network has almost no effect on

the result at the end.

LSTM (long short-term memory networks) is a

neural network that is considered an extension of

Kosiv Y., Yakovyna V. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

364 Software engineering and

systems analysis
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

RNN. It has a more complex architecture, allowing

it to store more context information. Thus, the neural

network has the ability to determine and remember

long-term dependencies between data [21].

CNN (convolutional neural network) is a neu-

ral network that is widely used to work with images.

CNN is based on convolutional and aggregation lay-

ers [22]. The convolution layer performs a convolu-

tion operation on the image, thanks to which it is

possible to reduce the number of parameters and

highlight the most important features. The aggrega-

tion layer does something similar, but instead of a

convolution operation, it applies a kernel, which se-

lects the value from the kernel that is defined by the

strategy, it can be the maximum value, the average,

etc. Despite the fact that the typical data format of

CNN is an image, it is also able to work with text, to

implement this, the text is converted into vectors of

numbers, that is, vectorization is performed.

BERT (bidirectional encoder representations

from transformers) is a machine learning technique

based on the architecture of the deep learning model

transformer [23]. BERT is developed and widely

used by Google. The original English-language

BERT models, namely 𝐵𝐸𝑅𝑇𝐵𝐴𝑆𝐸 and 𝐵𝐸𝑅𝑇𝐿𝐴𝑅𝐺𝐸 ,

were trained on a dataset of 800 million words and

on the English Wikipedia with 2500 million words.

There are many implementations of BERT, the dif-

ference between which is the dataset on which they

were trained, it can be datasets of one language, it

can be of many languages. In addition, there are var-

ious variations of the BERT architecture, such as:

the DistilBert model, which contains 40% fewer pa-

rameters and is a 60% faster version of BERT, the

RoBERTa model, which is an improved version of

BERT, and many others [24], [25].

2.8. Balancing data techniques

An unbalanced dataset is data in which the

number of rows of one class significantly exceeds

the number of rows of others. Since there are many

problems where the classes of interest are precisely

the minority classes, there are various ways of work-

ing with such datasets. There are three approaches,

namely: oversampling; undersampling, hybrid [26].

Oversampling is an approach to working with

unbalanced datasets, when the number of minority

class rows is increased. Oversampling implementa-

tion methods are: Random Oversampling, SMOTE.

Random Oversampling is a way of imple-

menting oversampling, in which minority rows are

duplicated in order to balance the dataset. A charac-

teristic feature of this method is that the selection of

lines is carried out randomly.

SMOTE (Synthetic Minority Oversampling

Technique) is an oversampling implementation

method that, instead of duplicating, synthetically

creates new rows of data that are similar to, but not a

match to, existing minority classes.

Undersampling is an approach to unbalanced

data in which the number of rows in the majority

class is reduced. The methods of implementing un-

dersampling include the following: Random Under-

sampling, Near-miss, Tomek links.

Random Undersampling is a method of un-

dersampling in which the rows of the majority class

to be removed are randomly selected.

Near-miss is a way of implementing under-

sampling that works with the distribution of values

in a dataset to determine which rows will be re-

moved for balancing.

Tomek links is an undersampling method that

uses so-called “Tomek links" to select data of the

majority class to be removed. These links between

data allow to identify rows of different classes that

are similar to each other. Thus, after applying this

method, in addition to balancing the data, noise is

also eliminated.

Hybrid is an approach that tries to combine

oversampling and undersampling. Among the hybrid

methods, it is worth highlighting SMOTETomek,

which is a combination of the SMOTE oversampling

approach and the Tomek links undersampling ap-

proach. Thus, using this method increases the dataset

thanks to SMOTE and cleans it with the help of

Tomek links.

3. EXPERIMENTAL RESULTS

3.1. Dataset

The dataset contained messages from social

media users regarding the events of the large-scale

Russian invasion of Ukraine from February 24, 2022.

It consisted of 13,000 records and 29 columns, from

which it is worth highlighting “Text digest” and

“Political view”, which are text information and the

political view of the message, respectively. There

are two possible values of the political view, namely:

pro-Ukrainian, pro-Russian.

It should be noted that the data sample con-

tained words from different languages, but a deci-

sion was made to focus on only three, namely:

Ukrainian, English, and Russian, which affected fur-

ther processing.

First, rows with empty values, duplicates, and

outliers were removed, after which the text of the

message, i.e., the “Text digest” column, was pro-

cessed using the following steps:

1. Updating text to be in the lower case;

2. Removal of links, hashtags and apostrophes;

Kosiv Y., Yakovyna V. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and

systems analysis
365

3. Replacement of special characters, such as

“ա” for “ш” and “ₚ” for “р”;

 4. Splitting the text into tokens;

5. Removal of punctuation characters, as well

as short and long words, the length of which was

less than three characters and more than 21 charac-

ters, respectively;

6. Removal of tokens that are stop words of the

Ukrainian, English or Russian languages;

7. Removal of words that contained symbols

that do not exist in the alphabets of the Ukrainian,

English and Russian languages;

8. Determining the language of a word using

the Python library langdetect and removing tokens

that are not Ukrainian, English or Russian;

9. Depending on the language of the word,

launching the corresponding tool, which, for a cer-

tain token, performs the definition of a part of the

speech and, according to the received information,

performs lemmatization on it;

10. Repeating steps 1-6, since, since after lem-

matization, some words were transformed as “сімя”

to “Сім’я” and “київ” to “Київ”.

As a result, the size of the dataset became equal

to 9358 records.

3.2. Machine learning algorithms

The problem of political leaning classification
was solved using the following machine learning al-
gorithms: Linear Support Vector Classifier
(LinearSVC), Support Vector Classifier (SVC), Nu-
Support Vector Classifier (NuSVC), Decision Tree
Classifier (DTC), Random Forest Classifier (RFC),
Bernoulli Naïve Bayes Classifier (B-NBC), Multino-
mial Naïve Bayes Classifier (M-NBC), Extreme Gra-
dient Boosting (XGBoost), Logistic Regression (LR).

For each algorithm listed above, the search for
the best hyperparameters was carried out using the
grid search optimization method, which in the im-
plementation of the scikit-learn library includes k-

fold cross-validation with 𝑘 = 5 by default. The re-
sults of the models were evaluated by accuracy,
macro F1-score, macro precision and macro recall.

The scikit-learn and xgboost libraries contain-
ing LinearSVC, SVC, NuSVC, DTC, RFC, B-NBC,
M-NBC, LR and XGBoost implementations were
used, respectively [27], [28]. In addition to machine
learning algorithms, hyperparameters were also
searched for the vectorization methods.

Thus, the search for the best hyperparameters of
each of the nine algorithms was carried out in com-
bination with the search for the best hyperparameters
of vectorization methods. The metrics for different
algorithms are listed in Table2.

According to the table, it can be noted that the

vectorization of Word2Vec significantly showed

worse performance than BoW and TF-IDF. The

macro F1-score was defined as the metric used to

determine the best model, as it allows demonstrating

the model effectiveness across all classes. Thus, the

LR algorithm with TF-IDF vectorization performed

best, which achieved a macro F1-score value of

0.7966. The second-best metric result of 0.7933 was

also obtained using LR, but with the BoW vectoriza-

tion method.

3.3. Neural networks

Next, neural networks were used to solve the

problem of political leaning classification. The first

network was CNN #1 with the following architec-

ture:

 Embedding layer, vector size is 300;

 Conv1D layer, 32 filters, kernel size 3;

 MaxPooling1D layer, kernel size 2;

 Flatten layer;

 Dense layer, 250 neurons, ReLU activation;

 Dense layer, 1 neuron, sigmoid activation.

After that, the neural network CNN #2 was de-

fined, which had the architecture:

 Embedding layer, vector size equal to 200;

 Conv1D layer, 128 filters, kernel size 5;

 GlobalMaxPooling1D layer, kernel size 2;

 Dense layer, 10 neurons, ReLU activation;

 Dense layer, 1 neuron, sigmoid activation.

Next, an LSTM neural network is built:

 Embedding layer, vector size is 100;

 Bi-LSTM layer, 64 neurons;

 Dense layer, 32 neurons, ReLU activation;

 Dense layer, 1 neuron, sigmoid activation.

Then a neural network consisting of CNN and

LSTM was defined:

 Embedding layer, vector size is 100;

 Conv1D layer, 64 filters, kernel size 3;

 MaxPooling1D layer, kernel size 2;

 LSTM layer, 100 neurons;

 Dense layer, 64 neurons, ReLU activation;

 Dense layer, 1 neuron, sigmoid activation.

After that, two neural networks were tested us-

ing BERT. DistilBERT base multilingual and XLM-

RoBERTa from the Hugging Face service were used

[29], [30]. The choice of these models is justified by

their training on texts of more than one hundred lan-

guages. Both networks had the following architec-

ture:

 BERT layer;

 Dense layer, 1 neuron, sigmoid activation.

Kosiv Yu. A., Yakovyna V. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

366

Software engineering and

systems analysis
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Table 2. Results of machine learning algorithms

Algorithm Vectorization Accuracy F1-score Precision Recall

LinearSVC BoW 0.9214 0.7813 0.799 0.7664

TF-IDF 0.8719 0.7459 0.7075 0.8355

Word2Vec 0.6846 0.569 0.5926 0.7287

SVC BoW 0.9228 0.7656 0.8185 0.7314

TF-IDF 0.9275 0.7918 0.8231 0.7679

Word2Vec 0.823 0.5289 0.5294 0.5287

NuSVC BoW 0.9211 0.7458 0.825 0.7039

TF-IDF 0.9243 0.7754 0.8177 0.7459

Word2Vec 0.8963 0.6724 0.7203 0.6463

DTC BoW 0.8987 0.71 0.7332 0.6928

TF-IDF 0.8979 0.7024 0.7288 0.6836

Word2Vec 0.8256 0.5614 0.5589 0.5646

RFC BoW 0.8806 0.7409 0.7099 0.7962

TF-IDF 0.8925 0.7527 0.7269 0.7915

Word2Vec 0.8958 0.5707 0.7212 0.5547

B-NBC BoW 0.8763 0.7263 0.699 0.7726

TF-IDF 0.8763 0.7263 0.699 0.7726

Word2Vec 0.8658 0.6295 0.6363 0.6239

M-NBC BoW 0.9238 0.7855 0.8072 0.7678

TF-IDF 0.9065 0.7689 0.7547 0.7861

XGBoost BoW 0.9235 0.7431 0.8502 0.694

TF-IDF 0.9203 0.7312 0.8342 0.6848

Word2Vec 0.8988 0.5374 0.8294 0.5338

LR BoW 0.9245 0.7933 0.8059 0.7824

TF-IDF 0.9226 0.7966 0.7963 0.7971

Word2Vec 0.7642 0.5986 0.6 0.6827
Source: compiled by the authors

The performance metrics for different types of

neural networks are shown in Table3.

According to the Table 3, it is possible to note

the disappointing results of neural networks with

BERT, as XLM RoBERTa showed a macro F1-

score equal to 0.48, and DistilBERT 0.69, which are

the worst values. The best result was obtained by

CNN #2 and LSTM neural networks with an F1-

score value of 0.76.

3.4. Working with unbalanced data

Since the dataset contains 88.8% of pro-

Ukrainian records and 11.2% of pro-Russian records,

it can be concluded that the classes of the dataset are

unbalanced. This was the reason for testing methods

of working with unbalanced data such as Random

Oversampling, Random Undersampling, SMOTE

and SMOTETomek. These techniques were applied

together with the best LR and SVC machine learning

algorithms and BoW and TF-IDF vectorizations in

the grid search hyperparameter optimization method.

The performance metrics for different models after

data balancing are given in Table 4.

Table 3. Results of neural networks

Neural network Accuracy F1-score Precision Recall

CNN #1 0.9 0.75 0.75 0.75

CNN #2 0.92 0.76 0.84 0.72

LSTM 0.91 0.76 0.78 0.75

CNN і LSTM 0.91 0.75 0.77 0.73

DistilBERT base multilingual 0.91 0.69 0.87 0.64

XLM RoBERTa 0.89 0.48 0.94 0.5
Source: compiled by the authors

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC

Kosiv Yu. A., Yakovyna V. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and

systems analysis
367

Table 4. Results of applying data balancing techniques

Model Accuracy F1-score Precision Recall

LR, TF-IDF, Random Oversampling 0.9213 0.7908 0.8104 0.7755

LR, TF-IDF, Random Undersampling 0.8158 0.6963 0.6689 0.8268

LR, TF-IDF, SMOTE 0.9222 0.794 0.8118 0.7797

LR, TF-IDF, SMOTETomek 0.9217 0.7933 0.8106 0.7794

SVC, TF-IDF, Random Oversampling 0.919 0.7833 0.8039 0.767

SVC, BoW, Random Undersampling 0.8265 0.704 0.6737 0.8229

SVC, TF-IDF, SMOTE 0.9191 0.7837 0.8042 0.7675

SVC, TF-IDF, SMOTETomek 0.9191 0.7837 0.8042 0.7675
Source: compiled by the authors

According to the table, it can be noted that the
implementation of data balancing did not improve
the results of the algorithms, but only reduced them
by 1-2% according to the macro F1-score. However,
it is worth highlighting the application of SMOTE,
which demonstrated the best F1-score metric value
of 0.794, which was only 0.2% less than the
achieved LR result with TF-IDF without SMOTE.

3.5. Ensembles of models

The next step was to create stacking ensembles
of models using the best machine learning algo-
rithms. With the help of grid search, the combination
of the vectorizations, its hyperparameters, basic
models, and meta-models was sorted out to find the
combination that would demonstrate the best metrics
values. The architecture of the constructed ensem-

bles is summarized in Table5, while the performance
metrics for these ensembles are listed in Table 6.

It can be seen from Table 6 that the best result
of macro F1-score equal to 0.7966 was achieved by
two ensembles stacking #3 and stacking #5. The
next step in working with the ensembles was to try
to improve the results of the models by testing dif-
ferent combinations of metamodel hyperparameters.
The obtained results are presented in Table7.

According to Table 7, it can be noted that it was
possible to improve only the metrics values of stack-
ing #6, but not stacking #5. Accordingly, it can be
noted that the achieved macro F1-score value equal
to 0.7966 by ensembles of models corresponds to the
best value of machine learning algorithms, namely
the result from the LR model with TF-IDF.

Table 5. Ensembles of models

Name of ensemble Vectorization Base models Meta-model

Stacking #1 BoW LinearSVC, M-NBC, LR B-NBC

Stacking #2 BoW LinearSVC, LR B-NBC

Stacking #3 TF-IDF SVC, NuSVC, LR B-NBC

Stacking #4 TF-IDF SVC, NuSVC, LR LinearSVC

Stacking #5 TF-IDF SVC, LR B-NBC

Stacking #6 TF-IDF SVC, LR SVC

Stacking #7 TF-IDF SVC, LR LinearSVC
Source: compiled by the authors

Table 6. Results of ensembles of models

Ensemble Accuracy F1-score Precision Recall

Stacking #1 0.9217 0.7902 0.811 0.7732

Stacking #2 0.9119 0.7804 0.7786 0.7828

Stacking #3 0.9246 0.7966 0.822 0.7769

Stacking #4 0.9261 0.7848 0.8428 0.748

Stacking #5 0.9246 0.7966 0.822 0.7769

Stacking #6 0.9179 0.7924 0.795 0.7909
Source: compiled by the authors

Table 7. Results of an attempt to improve model ensembles

Ensemble Accuracy F1-score Precision Recall

Stacking #5 0.9246 0.7966 0.822 0.7769

Stacking #6 0.9175 0.7931 0.7932 0.7938
Source: compiled by the authors

https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC
https://www.researchgate.net/publication/335341342_DijetGAN_a_Generative-Adversarial_Network_approach_for_the_simulation_of_QCD_dijet_events_at_the_LHC

Kosiv Yu. A., Yakovyna V. S. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

368 Software engineering and

systems analysis
ISSN 2663-0176 (Print)

ISSN 2663-7731 (Online)

CONCLUSIONS

Therefore, in this study, the existing solutions

to the problem of political leaning classification

were analyzed, and then machine learning algo-

rithms, neural networks, and techniques for working

with unbalanced data, vectorization methods, and

ensembles of models were used to solve the problem.

Among the machine learning algorithms, the best

results were demonstrated by SVC and LR with

BoW and TF-IDF vectorizations. The Word2Vec

vectorization method, in turn, was worse than BoW

and TF-IDF for all algorithms. The highest macro

F1-score value of 0.7966 was achieved by the LR

with TF-IDF vectorization, followed by 0.7933 from

algorithm LR with BoW and 0.7918 from SVC with

TF-IDF.

After that, there was an attempt to solve this

problem with CNN, LSTM and BERT neural net-

works. The largest macro F1-score value of 0.76 was

obtained by CNN and LSTM networks. Regarding

BERT, the values achieved by the two networks of

0.69 and 0.48 were the lowest among neural net-

works. Thus, it can be concluded that machine learn-

ing algorithms coped better with this task compared

to neural networks, as they demonstrated higher re-

sults by 2-3%.

In addition, since the dataset was unbalanced,

various data balancing techniques were tested with

the best machine learning algorithms. However, the

results did not improve and remained at the same

level. The highest macro F1-score value of 0.794

was achieved using LR with TF-IDF and SMOTE.

Next, stacking ensembles of models were creat-

ed from BoW and TF-IDF vectorizations and the

best machine learning algorithms. The largest macro

F1-score value of 0.7966 was achieved by two en-

sembles with TF-IDF vectorization, B-NBC meta-

model and SVC, NuSVC, LR and SVC, LR base

models, respectively. This was followed by a search

for the best hyperparameters of the metamodel for

some ensembles with the aim of metrics values im-

provement, but it was not possible to obtain a higher

value of the macro F1-score.

Thus, by combining the existing solutions to the

problem, three new classifiers were built, the LR

machine learning algorithm and two ensembles of

models, which demonstrated the largest value of the

macro F1-score equal to 0.7966 and coped best with

the task of political leaning classification.

Options for future experiments to improve re-

sults may include creating new ensembles, testing

other machine learning algorithms, vectorizations,

more complex neural networks, data balancing tech-

niques, pre-trained models. In addition, different da-

taset preprocessing techniques can be testes, such as

the use of various stemming and lemmatization algo-

rithms, the creation of a dataset with only nouns, with

nouns and verbs, with only Ukrainian words, etc.

REFERENCES

1. Ansari, M. Z., Aziz, M. B., Siddiqui, M. O., Mehra H. & Singh, K. P. “Analysis of political sentiment
orientations on twitter,” Procedia Computer Scienc. 2020; 167: 1821–1828.
DOI: https://doi.org/10.1016/j.procs.2020.03.201.

2. Di Giovanni, M., Brambilla, M., Ceri, S., Daniel, F. & Ramponi, G. “Content-based classification of
political inclinations of twitter users”. In 2018 IEEE International Conference on Big Data (Big Data). Seat-
tle: WA USA. 2018. p. 4321–4327. DOI: https://doi.org/10.1109/BigData.2018.8622040.

3. Ullah, H. et al. “Comparative study for machine learning classifier recommendation to predict politi-
cal affiliation based on online reviews”. CAAI Trans on Intel Tech. Sep. 2021; 6 (3): 251–264.
DOI: https://doi.org/10.1049/cit2.12046.

4. Chun, S., Holowczak, R., Dharan, K., Wang, R., Basu, S. & Geller, J. “Detecting political bias trolls
in twitter data”. In Proceedings of the 15th International Conference on Web Information Systems and Tech-
nologies. Vienna: Austria. 2019. p. 334–342. DOI: https://doi.org/10.5220/0008350303340342.

5. Alzhrani, K. M. “Political ideology detection of news articles using deep neural networks”. Intelligent
Automation & Soft Computing. 2022; 33 (1): 483–500, DOI: https://doi.org/ 10.32604/iasc.2022.023914.

6. Alzhrani, K. M. “Politicians-based deep learning models for detecting news, authors and media polit-
ical ideology”. IJACSA. 2022; 13 (2). DOI: https://doi.org/10.14569/IJACSA.2022.0130286.

7. Vijayaraghavan, P., Vosoughi, S. &. Roy, D “Twitter demographic classification using deep multi-
modal multi-task learning”. In Proceedings of the 55th Annual Meeting of the Association for Computation-
al Linguistics. Vancouver: Canada. 2017; 2: 478–483. DOI: https://doi.org/10.18653/v1/P17-2076.

8. Bilbao-Jayo A. & Almeida, A. “Improving political discourse analysis on twitter with context analy-
sis IEEE Access. 2021; 9: 104846–104863. DOI: https://doi.org/10.1109/ACCESS.2021.3099093.

https://doi.org/#_blank
https://doi.org/#_blank
https://doi.org/#_blank
https://doi.org/#_blank
https://doi.org/#_blank
https://doi.org/#_blank
https://doi.org/#_blank
https://doi.org/#_blank

Kosiv Y., Yakovyna V. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Software engineering and

systems analysis
369

9. Gu, F. & Jiang, D. “Prediction of political leanings of chinese speaking twitter users”. In Interna-
tional Conference on Signal Processing and Machine Learning (CONF-SPML). Stanford: CA, USA. Nov.
2021. p. 286–289. DOI: https://doi.org/10.1109/CONF-SPML54095.2021.00062.

10. Fagni, T. & Cresci, S. “Fine-grained prediction of political leaning on social media with unsuper-
vised deep learning”. Jair Feb. 2022; 73: 633–672. DOI: https://doi.org/ 10.1613/jair.1.13112.

11. Agrawal, R. “Must known techniques for text preprocessing in NLP”. Analytics Vidhya. Jun. 14,
2021. – Available from: https://www.analyticsvidhya.com/blog/2021/06/must-known-techniques-for-text-
preprocessing-in-nlp. – [Accessed: 19, Nov. 2021].

12. “How to process textual data using TF-IDF in Python”, freeCodeCamp.org. Jun. 06, 2018. – Avail-
able from: https://www.freecodecamp.org/news/how-to-process-textual-data-using-tf-idf-in-python-
cd2bbc0a94a3/. – [Accessed 19, Nov. 2021].

13. Baeldung, “Multiclass classification using support vector machines | Baeldung on computer science”.
Oct. 07, 2020. – Available from: https://www.baeldung.com/cs/svm-multiclass-classification. – [Accessed:
19, Nov. 2021].

14. Bento, C. “Decision tree classifier explained in real-life: picking a vacation destination”. Medium.
Jul. 18, 2021. – Available from: https://towardsdatascience.com/decision-tree-classifier-explained-in-real-
life-picking-a-vacation-destination-6226b2b60575. – [Accessed: 19, Nov. 2021].

19. “Naive bayes classifier”. Wikipedia. – Available from:
https://en.wikipedia.org/w/index.php?title=Naive_Bayes_classifier&oldid=1118900065. – [Accessed: 19,
Nov. 2021].

20. Morde, V. “XGBoost algorithm: long may she reign!” Medium. Apr. 08; 2019. – Available from:
https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-
edd9f99be63d. – [Accessed: 19, Nov. 2021].

21. Kumar, S. “7 hyperparameter optimization techniques every data scientist should know”. Medium.
26, May 2021. – Available from: https://towardsdatascience.com/7-hyperparameter-optimization-techniques-
every-data-scientist-should-know-12cdebe713da. – [Accessed: 19, Nov. 2021].

22. “Hyperparameter optimization”. Wikipedia. Oct. 04, 2022. – Available from:
https://en.wikipedia.org/w/index.php?title=Hyperparameter_optimization&oldid=1114024235. – [Accessed:
19, Nov. 2021].

23. Singh, A. “Ensemble learning | Ensemble techniques”. Analytics Vidhya, Jun. 18, 2018. – Available
from: https://www.analyticsvidhya.com/blog/2018/06/comprehensive-guide-for-ensemble-models. – [Ac-
cessed: 19, Nov. 2021].

24. Phi, M. “Illustrated guide to recurrent neural networks”. Medium. Jun. 28, 2020. – Available from:
https://towardsdatascience.com/illustrated-guide-to-recurrent-neural-networks-79e5eb8049c9. – [Accessed:
19, Nov. 2021].

25. Says, K. L. “What is LSTM – introduction to long short term memory”. Intellipaat Blog. May 28,
2020. – Available from: https://intellipaat.com/blog/what-is-lstm. – [Accessed: Nov. 19, 2021].

26. Saha, S. “A comprehensive guide to convolutional neural networks – the ELI5 way”. Medium. –
Available from: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-
the-eli5-way-3bd2b1164a53. – [Accessed: 19, Nov. 2021].

27. “BERT (language model)”. Wikipedia. 17, Nov. 2021. – Available from:
https://en.wikipedia.org/w/index.php?title=BERT_(language_model)&oldid=1122505336. – [Accessed: 19,
Nov. 2021].

28. “DistilBERT”. – Available from: https://huggingface.co/docs/transformers/model_doc/distilbert. –
[Accessed: 19, Nov. 2021].

28. “RoBERTa”. – Available from: https://huggingface.co/docs/transformers/model_doc/roberta. – [Ac-
cessed: 19, Nov. 2021].

29. Brownlee, J. “Random oversampling and undersampling for imbalanced classification”. Ma-
chineLearningMastery.com. Jan. 14, 2020. – Available from: https://machinelearningmastery.com/random-
oversampling-and-undersampling-for-imbalanced-classification/. – [Accessed: 19, Nov. 2021].

30. “Scikit-learn: machine learning in python – scikit-learn 1.1.3 documentation”. – Available from:
https://scikit-learn.org/stable. – [Accessed: 19, Nov. 2021].

31. “XGBoost documentation – xgboost 1.7.1 documentation”. – Available from:
https://xgboost.readthedocs.io/en/stable. – [Accessed: 19, Nov. 2021].

32. “Distilbert-base-multilingual-cased Hugging Face.” – Available from:
https://huggingface.co/distilbert-base-multilingual-cased. – [Accessed: 19, Nov. 2021].

https://doi.org/#_blank
https://doi.org/#_blank

Kosiv Y., Yakovyna V. / Applied Aspects of Information Technology

 2022; Vol.5 No.4: 359–370

370 Software engineering and

systems analysis
ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

33. “Jplu/tf-xlm-roberta-base Hugging Face”. – Available from: https://huggingface.co/jplu/tf-xlm-
roberta-base. – [Accessed: 19, Nov. 2021].
Conflicts of Interest: the authors declare no conflict of interest

Received 05.11.2022

Received after revision 10.12.2022

Accepted 24.12.2022

DOI: https://doi.org/10.15276/aait.05.2022.24

УДК 004.912

Класифікація політичної забарвленості тексту трьома мовами

з використанням методів опрацювання природної мови

Косів Юрій Андрійович1)

ORCID: https://orcid.org/0000-0001-7412-2025; yurii.kosiv.mknssh.2021@lpnu.ua

Яковина Віталій Степанович1)
ORCID: https://orcid.org/0000-0003-0133-8591; vitaliy.s.yakovyna@lpnu.ua. Scopus Author ID: 6602569305

1) Національний університет «Львівська політехніка», вул. С. Бандери, 12. Львів, 79013, Україна

АНОТАЦІЯ

У цій статті здійснюється розв’язання задачі класифікації політичної забарвленості текстового ресурсу. Спочатку ви-

конано детальний аналіз десяти досліджень за темою роботи у вигляді порівняльної характеристики інструментарію. Літе-

ратурні джерела порівнювались за методами розв’язання задач, здійсненим навчанням, метриками оцінки та способами век-

торизації. Таким чином визначено, що для розв’язання задачі найчастіше використовувались алгоритми машинного навчан-

ня та нейронні мережі, а також способи представлення ознак TF-IDF та Word2Vec. Далі було побудовано різноманітні моде-

лі класифікації того, чи текстова інформація є проукраїнською, чи проросійською на основі набору даних, що містив пові-

домлення користувачів соціальних мереж про події широкомасштабного російського вторгнення в Україну з 24 лютого 2022

року. Розв’язання задачі здійснювалось за допомогою алгоритмів машинного навчання Support Vector Machines, Decision

Tree, Random Forest, Naïve Bayes classifier, eXtreme Gradient Boosting та Logistic Regression, нейронних мереж Convolutional

Neural Networks, Long short-term memory та BERT, технік роботи з незбалансованими даними Random Oversampling, Random

Undersampling, SMOTE та SMOTETomek, а також ансамблів моделей stacking. З алгоритмів машинного навчання найкраще

впорався LR, який продемонстрував значення макро F1-міри рівне 0.7966, коли ознаки були перетворені векторизацією TF-

IDF, а коли BoW – 0.7933. З нейронних мереж найкраще значення макро F1-міри рівне 0.76 отримано за допомогою CNN та

LSTM. Застосуванням технік балансування даних не вдалося покращити результати алгоритмів машинного навчання. Далі

були визначені ансамблі моделей, які складались з алгоритмів машинного навчання. Двома з побудованих ансамблів було

досягнуто те ж значення макро F1-міри 0.7966, що і за допомогою LR. Ансамблі, яким вдалося це зробити, складались з

векторизації TF-IDF, метамоделі B-NBC та базових моделей SVC, NuSVC LR і SVC, LR відповідно. Таким чином три кла-

сифікатори, алгоритм машинного навчання LR та два ансамблі моделей, які були визначені шляхом здійснення комбінації

наявних способів розв’язання задачі класифікації політичної забарвленості текстового ресурсу, продемонстрували найбіль-

ше значення макро F1-міри 0.7966. Отримані моделі можуть бути використані для детального огляду різних новинних ви-

дань за характеристикою політичної забарвленості, інформація про що може допомогти ідентифікувати перебування в інфо-

рмаційній бульбашці.

Ключові слова: Класифікація тексту; політична забарвленість; алгоритми машинного навчання; нейронні мережі; ан-

самблі моделей; обробка природної мови

Copyright © Національний університет «Одеська політехніка», 2022. Всі права захищені

ABOUT THE AUTHORS

Yurii A. Kosiv - Student of Artificial Intelligence Department. Lviv Polytechnic National University, 12, Bandery Str.
Lviv, 79013, Ukraine

ORCID: https://orcid.org/0000-0001-7412-2025; yurii.kosiv.mknssh.2021@lpnu.ua

Research field: Natural language processing; artificial intelligence; sentiment analysis

Косів Юрій Андрійович - студент кафедри Cистем штучного інтелекту. Національний університет «Львівська

політехніка», вул. С. Бандери, 12. Львів, 79013,Україна

Vitaliy S. Yakovyna - Dr. Sci. (Eng), Professor, Professor of Artificial Intelligence Department. Lviv Polytechnic

National University, 12, Bandery Str. Lviv, 79013, Ukraine
ORCID: https://orcid.org/0000-0002-9346-145X; asg@opu.ua. Scopus Author ID: 8393582500

Research field: Software quality and reliability; machine learning

Яковина Віталій Степанович - доктор технічних наук, професор, професор кафедри Cистем штучного інтелекту.
Національний університет «Львівська політехніка», вул. С. Бандери, 12. Львів, 79013,Україна

https://doi.org/10.15276/aait.05.2022.24

