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PROPAGATION IN THE FINITE HOMOGENEOQOUS LINES

Introduction. It is well known that a lot of industrial and / or engineering problems in technical
electrodynamics can be described analytically by the systems of PDEs (partial differential equations).
Such mathematical modeling naturally implies corresponding solution, either numerical, or exact. In
spite of development of computer techniques and variety of the standard subroutines, requirement of
explicit investigation in modern electromagnetic theory remains urgent as well [1]. Here, those meth-
ods are mostly important that propose more or less general study algorithms. Thus, the first and the
main stage in the effective analytic research of the finite-dimensional system of PDEs simulating vari-
ous physical and engineering processes, is its matrix diagonalization procedure. It means that the orig-
inal vector field problem is reduced to the equivalent totality of scalar equations where each of them
depends on the only one unknown component of the initial vector field function. It is obvious, that
further computation and mathematical simulation of the specific applied phenomena are simpler in
scalar terms. The same fact can be affirmed for technical electrodynamics too.

Literature review. Basing on the aforesaid information, one can refer to [2] where the general
diagonalization procedure is suggested for arbitrary finite-dimensional system of PDEs. The given
approach represents operator analogy of the classical algebraic Gauss method, and corresponding theo-
rem of applicability is proved there in [2]. Directly, those mentioned results are used in the case of ar-
bitrary expofunctionally excited isotropic homogeneous medium mathematically determined by the
specific differential Maxwell system that appeared at first in [3]. Though this system was investigated
in the general classical spatial temporal form of (x, y, z, t), its particular version of (x,¢) turns out to
be rather interesting for practical industrial use. Application deals with the electromagnetic wave
propagation under expofunctional influences in the various isotropic homogeneous lines with the dif-
ferent time intervals. So, the present studied system looks like
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{51H=(6+8063)E+jos O

—0,E=(r+p,05)H +e”,

where
E,H = E,H(x,t) — are the unknown electric and magnetic field intensities;

o,u,,g, =const >0 — are the specific conductivity, absolute magnetic and electric permeabil-

ity of the medium,;

.0S oS .08 oS . . . . .
j o ,e" =j",e" (x,t) — are the given functions describing the outside current sources and in-

tensities;

a * a . . .
0, = P 0y=0,t\,0,= Pl are the partial differential operators;
X

A =const >0 — is the signal parameter exciting the medium. Absorption of signal by the medi-
um corresponds to “+”, and activity of the medium implies “-;
r=const >0 — is responsible for the system “symmetry” and simplifies mathematical calcula-

tions. At the end, it can be deleted without influence on either computing procedure, or on the original
problem statement. £ ,H , j”,e¢” belong to one and the same class of twice continuously differenti-
ated functions over the space (x,#), and structure of (1) determines order of derivative. Later, this func-

tional class can be modified taking into account the particular boundary problem conditions. As it is
shown in [4], system (1) can be reduced to the general wave PDE with respect to all unknown elec-
tromagnetic field intensities

0y +0F =1, )
where
. F /i

Os =(c+¢,0,)(r+1,0y) =€,1,(0;)" + (o, +re,)d; +or — is the differential polynomial op-
erator;

7 {ﬁH—(HuaaZ)ﬁ o/

Lol [ 0fi—(o+e,8,)fs

Operator “power” is understood in its usual meaning as the consecutive operator application.

Solvability criterion is proved also in [4] and it sounds like that: the specific case of the symmetrical

differential Maxwell system (1) is solved explicitly in the meaning of its equivalence to the general
scalar wave PDE (2) iff conditions

} — are the known functions.

o >G(o¢ua/sa —sza/mj

or

5 s[%(cJua/sa —sza/u»j

and

(ofe, /) (o)e, /)’ —40; [(n.e,)
2
are valid, and only non generalized functions are taken into account.

0y #FA
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The sign alteration in front of A is independent of the sign value near the square root. The given
inequalities are understood in the meaning of their influence upon the respective considered functions.

Using the mentioned proven theorem, three types of boundary problems regarding (2) were pro-
posed in [4...6] covering different lengths of lines and time intervals. Namely, [4] dealt with infinite
lines and temporal arguments, [5] concerned both finite values of x and¢, [6] was connected with in-
finite lines and finite time intervals. It is strange, but the last possible version of finite x and infinite ¢
remained out of consideration even till now.

Aim of the Research. So, the aim of the research is mathematical modeling and analytical study
of electromagnetic wave propagation in the finite isotropic homogeneous lines under expofunctional
excitations and arbitrary large time intervals.

Main Body. Respective boundary problem statement is written below

(@2 +01)F = f, xe[0,1], t €[0,+0);

F(x,0)=g,(x), g(x)=[g(x), g ()]'; 0 PN

F(xvt)|t—>+oo =0, t%@; o (3)
F(0,1) =g, (1)

F(l,t)=g;(1), gj(t):[gjl(t)’gj2(t)]r (/=2,3),

where g,(x), g;(¢) (j=2,3) — are the known continuous vector functions in the appropriate intervals;

T . . .
[,] means the transposed two-dimensional matrix column.

Results. An explicit solution of (3) is done by means of the Fourier finite integral sine transform
application to the spatial variable x [5] and considering temporal argument ¢ as the main one. Hence,

l 2

integrating by parts twice %J.afF(x, t) sin(n%x)dx = n(%) (—n%Fn O+ g0+ g, (t)j and
0

using this last expression, (3) is reduced to the boundary problem with respect to the Fourier integral

sine transforms

e’ dt
F;z(o):nglﬂ El(t) |t4)+oc:0,

d’ d .
—_— — F = , 0’ ),
[ +p +QJ (0= 1, (1), t€[0,+0) )

where
3
p=o/e, +r/u, 221, g=A" £ Mo/, +r/u,)+ [GI’ —(T;) an/(uaaa) — are the constant co-

efficients;

1
.8 = %l‘gl (x)sin(n?x) dx ;
l
F, =F,(t) =§J.F(x,t)sin(n%xj dx;
0
1
7.t :?jf(x,t)sin(n%xj dx ;
0

fr=f(t)= (fn (®) +(T;j n((-1)"g;(t) - g, (t))J/(uasa) — are the corresponding Fourier sine

finite transforms whose right or left lower indices » mean transformation operation.
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Solving linear ODE (ordinary differential equation) from (4) by means of the same classical ap-
paratus as in [4...6], one gets the unknown transform of electromagnetic field intensities

F, =Y exp(,(C, + ()", ()/D), ¥C, =const e R )

j=1
where
s, ()= Iexp(—co ) f, (¢)dt (j=1,2) — are the given functions;

_ 1yl 2 3 2
JD=0, -, 0, =L VD (j=1,2), D=|2-L +4(Ej " >0 — are the
2 &, Mg 1) e,
found numerical values from the aforesaid ODE’s solving process.
Further, after realization of both initial conditions from (4), the unknown arbitrary constants

C; (j=1,2) should be sought from the following system

{Cl +C, = ,8,4
C,exp(f) + C, exp(®,) |, 5100 = , &5-

(6)

oS
n

Taking into account physical character of fn(t) formed by j&*, e, it is natural to accept

7.(0)],,...=0. Hence, , g from (6) is the following

8= %Ji(—l)’s,- Oexp(©,0)],.. ™
and
$1 (0= jexp(—m,-z)[ﬂ n((-1)" g5 ()~ 2 ()t | ... (8)
In (6), transform
4= a8l 1)’s,(0 9
1 84=.8 J’Z( )’ s;(0) ©9)

does not depend on ¢ and represents const while £ — +o0.
Relying on (7)...(9), those required C; (j =1, 2) from (6) can be written uniformly

C, = - e(xpl():l\/_)[\/_(sz(t)exp( ~t/D) —5,(t)) - g4eXP((j—2)t\/E)j|H+ao (/=12). (10)

Since lim exp(—t\/ﬁ )=0, it is obvious to assume the mildest sufficient condition for s,(¢) in

t—>+0

(10), as being bounded at infinity. The latter requirement jointly with convergence of s,(¢) at the infi-

nite point
3 lim s,(¢) = const, # o (11)
t—>+0
takes (10) to the following expression
; const
C,=(-D" [(1— ), &4 — IJ (j=12). 12
J D& == | U (12)

Substitution of (12) for (5) gives required solution of the transformed problem (4)

F, WZ( 1) exp(o,)((1— /), 247D —const, +s,(t)). (13)
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Verification of (13) satisfying to the first initial condition and ODE from (4) is trivial. Checking
of the second initial condition from (4) in terms of (13) is not so simple and is reduced to the following
expression by application of (11)

1
Ey(0)|iyin= Eexp(mzt)(n&ﬁ +const, — 5, () |,y o - (14)

Taking into account (9), (11) and boundedness of's,(¢)|,, ..., the whole sum inside of the round
brackets from (14) appears bounded while ¢ — +oo . Further, turning back to w, that is written above
after (5), one can notice that®, <0 for arbitrary positive “+XA ” in p , when absorption of signal takes

place. Hence, the right part of (14) equals zero, and the second initial condition from (4) is true. Nev-
ertheless, even for “—A ”in p , when activity of the medium exists, p can be made positive in the case

of any A >0 numerical value. It is absolutely natural because of the structure of p represented by

formula after (4) and original meaning of » as an extra theoretical positive constant (look explanations
of (1)). So, for each possible value of A > 0in the presence of activity of the medium while “—-A” in
(1), (3), (4), r>0 can be accepted as big, as it is claimed by inequality p =o/¢, +r/pn, =21 >0.

Therefore, even in this case @, <0, and the right part of (14) is zero. As the result, the second initial
condition from (4) is checked and confirmed completely.

L : L . 2l & .
Application of the inverse Fourier sine finite transform —ngm(n%xJ to (13) forms the want-
1 n=l

ed explicit solution of the original boundary problem (3), i.e. function

2] & .
F(x,t)= —iZFn (t)sm(n%x] =
21 2 o (13)
= Z—ZZ(—I)”' exp(o;)(1-/), g4\/5 —const,+s,(7)) sin(nﬁxj
Y \/B n=1 j=1 l
that describes the electromagnetic field behavior. The last result means that the goal of the present pa-
per is completely attained.

Conclusions. Though the shortcoming of given article is the lack of particular numerical compu-
tations, it can be covered by virtue of (15). Really, all possible engineering phenomena analytically
determined by (1), (3) have general explicit solution (15) that simplifies even computer calculus. Re-
quired electromagnetic field intensities for various types of lines and different time intervals are got by

direct substitution of o, p,,¢€,,/, etc. for (15) without any approximate calculating procedure.

Moreover, the proven criterion reduces original vector field statement to the equivalent general
scalar wave PDE that incomparably easier to solve. Construction of corresponding boundary problems
based on this equation and mathematically simulating investigated engineering or physical process is
also more obvious than dealing with initial matrix formulation.

Suggested approach can be applied effectively to arbitrary finite-dimensional systems of PDEs
analytically describing physical and industrial phenomena. Present results can be used for mathemati-
cal modeling and analytical study of the relevant modern problems in radio engineering and telecom-
munications.

Literature

1. Proceedings of the International Scientific Conference on the Mathematical Methods in Electromagnetic
Theory (MMET 12), Kharkov, August 2012. — Danvers: IEEE, 2012. — 594 p.

2. Dmitrieva, I.Yu. Diagonalization of the differential operator matrix in the case of the multidimensional
circuits / I.Yu. Dmitrieva, A.M. Ivanitckiy // Haykogi mpaiti OHA3 im. O.C. ITomoBa. — 2009. — Ne 1. —
C.36 —51.

EJIEKTPOHIKA. PAJIOTEXHIKA. 3ACOBHM TEJIEKOMYHIKALITIA



ISSN 2076-2429 (print) . . . . 217
ISSN 2223-3814 (on line) [pani OxeceKroro moJiTexHIYHOTO yHIBEpcHUTETY, 2014. Bum. 1(43)

3. Banunkuif, A.M. 3aBUCUMOCTb TPETHETO U YETBEPTOro ypaBHEHMH MakcBesula OT HEepBBIX IBYX IpHU
MPOU3BOJBLHOM BO30YXKICHHH 3JCKTpOMarHuTHoOro moiist / A.M. WBanunkuii // Haykosi mpami OHA3
im. O.C. IlonoBa. — 2004. — Ne 2. — C.3 — 7.

4. Dmitrieva, I.Yu. Signal propagation in semi-infinite lines and its mathematical representation /
L.Yu. Dmitrieva // IIp. Onec. momirexH. yu-ty. — Opneca, 2013 — Bumn. 2(41). — C. 261 — 266.

5. Dmitrieva, I. Mathematical modeling of wave propagation in the finite homogeneous lines /
I. Dmitrieva // Hyperion International Journal of Econophysics & New Economy. — 2013. — Vol. 6,
Iss. 2. — PP. 219 — 2209.

6. ImutpieBa, [HO. IlomupeHHS  €JIEKTPOMArHITHUX XBWIb B  OJHOPIZHHX  JIHIAX  1OpH
excriopyHkiionansaux Brumeax / 1LY0. [Imurpiesa // Haykosi npaui OHA3 im. O.C. ITonoa. —2013. —
Nel.—C.77—82.

References

1. Proceedings of the International Scientific Conference on the Mathematical Methods in Electromagnetic
Theory (MMET 12), Kharkov, August 2012. — Danvers: IEEE, 2012. — 594 p.

2. Dmitrieva, I.Yu. Diagonalization of the differential operator matrix in the case of the multidimensional
circuits / I.Yu. Dmitrieva, A.M. Ivanitskiy // Naukovi pratsi ONAZ im. O.S. Popova [Proceedings of
ONUC]. —2009. —# 1. —pp. 36 — 51.

3. Ivanitskiy, A.M. Zavisimost’ tret’ego i chetvertogo uravneniy Maksvella ot pervykh dvukh pri
proizvol’nom vozbuzhdenii elektromagnitnogo polya [Dependence of the third and fourth Maxwell
equations upon the first two at arbitrary excitation of electromagnetic field] / A.M. Ivanitskiy / Naukovi
pratsi ONAZ im. O.S. Popova [Proceedings of ONUC]. — 2004. — # 2. —pp. 3 — 7.

4. Dmitrieva, I.Yu. Signal propagation in semi-infinite lines and its mathematical representation /
I.Yu. Dmitrieva // Pratsi Odeskoho politekhnichnoho universytetu [Proceedings of Odesa Polytechnic
University]. — Odesa, 2013 — Iss. 2(41). — pp. 261 — 266.

5. Dmitrieva, I. Mathematical modeling of wave propagation in the finite homogeneous lines /
I. Dmitrieva // Hyperion International Journal of Econophysics & New Economy. — 2013. — Vol. 6,
Iss. 2. —pp. 219 — 229.

6. Dmytriieva, 1.Yu. Poshyrennia elektromahnitnykh khvyl v odnoridnykh liniiakh pry ekspofunktsio-
nalnykh vplyvakh [Electromagnetic wave propagation in the homogeneous linesunder expofunctional
excitations] / [.Yu. Dmytriieva // Naukovi pratsi ONAZ im. O.S. Popova [Proceedings of ONUC]. —
2013. —# 1. —pp. 77 — 82.

AHOTAINIA / AHHOTALIUSA / ABSTRACT

LIO. [Imumpicsa. AHaliTHYHE AOCJIiIKeHHS MOLIUPEHHS eJIeKTPOMATrHiTHUX XBWJIb Y KiHIEeBUX OJHOPIAHUX JIi-
HifIX. 3aIpONIOHOBaHI Pe3yJIbTaTH € YaCTKOBUM BHIIAJIKOM 3arajbHOTO HAyKOBOTO HAIPSAMY, IOB’S3aHOT0 3 MAaTEMaTUYHUM
MOJICJIIOBAHHSM Ta aHAJITHYHMM BHBYCHHSIM SIBHIL €ICKTPOMArHITHOTO IO, IO ONMHCYIOThCs cucteMamu YJIP (audepen-
LiaNbHUX PIBHSAHB Y YaCTHHHUX NMOXimHUX). CriernivHni eneKTpoJMHAMIYHIN 1HKEHEPHHUH MPoIiec 3aaHo TudepeHLiaib-
HOIO cHcTeMOoI0 MakcBemta, eeKTUBHE JOCIIJDKEHHS KO IPHITyCKae KOPEKTHY TEOPETHUYHY Ta ()i3HYHY IIOCTAHOBKY Yy
TepMiHaxX 3arajJbHOr0 XBIILOBOro YJIP BiHOCHO BCiX (yHKIiH Hampys>keHOCTI mois. basyrouncs Ha IboMy PiBHSIHHI, BIAIIO-
BiJIHa KpaioBa 3a/iaya BU3HAYA€ IMOLIMPEHHS eIEKTPOMArHiTHIX XBHJIb B i30TPONHHUX OJHOPIAHUX KIHLEBHX JiHISX IPH Has-
BHOCTI €KCHO(YHKIIOHAIBHUX 30y/PKEHb Ta y CKUIBKH 3aBrOJHO BEJIMKHX MPOMDKKAX yacy. SIBHe po3B’s3aHHs 3a3HAaueHOT
3aa4i 3HAXOAMUTHCS MOOYHOBOI OOEPHEHOr0 MATPUYHOIO OIEpaTopa i METOJOM IHTErpalbHUX NEpeTBOpPEHb. JloBeneHo
TaKOX KPUTEpPill po3B’si3aHHs, 110 3a0e31edye KOPEKTHICTh (i3UUHUX/IHKSHEPHUX YMOB i MaTeMaTHYHY TEXHIKY OOYHCIICHb.
3anponoHOBaHUK aHATITUYHUH MiAXiA € YACTUHOIO 3arallbHOT0 METOAY IIOJO AETAIBHOTO JOCTIIKEHHS MOBEIIHKH CJICKT-
POMAarHITHOTO MOJIA y PI3HUX CEpEeIOBHIIAX.

Kniouosi crosa: nndepenniansia cucreMa MakcBena, 3aranbHe XBHJIBOBE PIBHSHHS, KpaioBa 3ajaya BiTHOCHO Ha-
NIPY>KEHOCT] eIEKTPOMATHITHOTO MOJIS.

HIO. /Imumpuesa. AHAINTHYECKOE HCCIeJOBAHHE PACHPOCTPAHEHMS] 3J1eKTPOMATHUTHBIX BOJIH B KOHEYHBIX
OHOPOIHBIX JUHUSAX. [Ipe/yioKeHHbIEe pe3yIbTaThl NPEICTAaBIAIOT YaCTHBII Cilydail 00lIero Hay4yHOro HarpaBJICHHUs, CBSI-
3aHHOTO C MaTEMAaTHYECKUM MOJEIMPOBAHHEM H aHATMTHYECKUM H3yYEHHEM SIBICHUH 3JIEKTPOMArHUTHOIO IO, OMHCHI-
BaeMbIxX cucteMamu YUY (nuddepennpanbHpIx ypaBHEHHI B YaCTHBIX MPOU3BOAHBIX). Crieluduueckuil IeKTpoAnHaMude-
CKUI MH)KEHEepHBIH Iporecc 3amaercs nuddepeHnnanbHoi cucreMoir Makcsemna, 3 (heKkTHBHOE HCCIe0BaHNE KOTOPOH
MOJpa3yMeBaeT KOPPEKTHYIO TEOPETHYECKYI0 M (PM3MYECKyI0 MOCTAaHOBKY B TepMHHax oOmiero BomHoBoro YJIY otHOCH-
TENBHO BCEX HaIpsDKEHHOCTEH moms. OCHOBBIBASICH HA 3TOM YPaBHEHHH, COOTBETCTBYIOIIAS KpaeBas 3ajada OHpeserser
pacIpoCTpaHEeHUE SJIEKTPOMATHUTHBIX BOJIH B M30TPOMHBIX OJHOPOAHBIX KOHEYHBIX JMHHSAX IPH SKCIO(YHKIMOHAIBHBIX
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BO30YKICHHUSIX U CKOJIb YTOTHO OOJIBIINX ITPOMEKYTKAX BPeMEHH. SIBHOE pElICHUE YIIOMSIHYTOH 3aJa4i HaXOAUTCS TOCPEI-
CTBOM MOCTPOCHHUS OOPATHOTO MATPUYHOTO OMEPATOPa U METOJa MHTEIPANTbHBIX TpeoOpa3oBanuii. JokasaH Takke KpUTEPHUid
Pa3peIIMMOCTH, 00ECIICYMBAIOIINN KOPPEKTHOCTh (YU3UUCCKUX/UHIKCHEPHBIX YCIOBUI U MATEMATHYCCKYHO TEXHHKY BBIYHC-
neHui. IIpennoskeHHbIH aHATUTHYECKUI TOAX0A MPEACTABIAET YacTh 00IIero MeToa, IeTalbHO UCCIIEAYIOIEro TOBEICHNE
3JIEKTPOMArHUTHOTO MTOJIS B PA3JIMYHBIX CPEiax.

Kniouesvie cnosa: nuddepennmanpas cucrema MakcBeina, o0miee BOJTHOBOE ypaBHEHHE, KpaeBasi 3aja4a OTHOCH-
TEJIFHO HANPSHKEHHOCTEH 3JIEKTPOMArHUTHOTO TIOJIS.

L. Yu. Dmitrieva. Analytical study of electromagnetic wave propagation in the finite homogeneous lines. The sug-
gested results represent a special case of the general scientific trend dealing with mathematical modeling and analytical study
of electromagnetic field phenomena described by the systems of PDEs (partial differential equations). A specific
electrodynamic engineering process is specified by the differential Maxwell system whose effective research implies correct
theoretical and physical statement in terms of the general wave PDE regarding all field intensities. Based on this equation, the
corresponding boundary problem determines electromagnetic wave propagation in the isotropic homogeneous finite lines
under expofunctional excitations and arbitrary large time intervals. Explicit solution of the aforesaid problem is found using
inverse matrix operator construction and the integral transform method. Solvability criterion is also proved, supporting cor-
rectness of the physical/engineering conditions and mathematical computing technique. The proposed analytic approach rep-
resents part of the general method investigating electromagnetic field behavior for arbitrary media in detail.

Keywords: Maxwell differential system, general wave equation, boundary problem regarding electromagnetic field intensities.
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DIGITAL MODULATION METHOD BASED ON PERFECT
BINARY ARRAYS

Introduction. Modern telecommunication systems operating in a multipath propagation condi-
tions must possess high resilience, robustness and secrecy. It is known [1] that the secrecy primarily
determined by the energetic and parametric secrecy. Noise-like signals are commonly used to ensure
communication secrecy. Such signals are built on the basis of certain algebraic structures.

Term “noise-like signals” is referred to the signals, for which the product of their bandwidth F
and elementary symbol duration T is much greater than 1. This product is called the processing gain
and denoted as B, 1.€.78

B=FT. (1)

For the noise-like signals the processing gain B <1. The wider bandwidth F of noise-like signal,
which is the spreading code (1), the higher the energetic and parametric secrecy of communication.
The frequency of noise-like signals changing and their selection from the signal ensemble depends on
many requirements to a communication system and can’t be unambiguously determined [1].

Literature review. Noise-like signals can be designed using various structures. More recently,
the heightened attention in domestic and foreign papers is paid to the application of Perfect Binary
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