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ANALYSIS AND DEVELOPMENT OF EXISTING ALGORITHMS FOR SOLVING THE
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Abstract. In this article we have described the object of the discrete logarithm problem and spelled out
the ways of the discrete logarithm theory implementation. Also there is the analysis of some methods by
indication of the controversial points and adding missing steps. In this work, we suggest the alternative
method that requires less computational complexity but at the same moment it has a disadvantage in
meaning of program realization. So, it must be compared to the current method to provide the complex

estimate.
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Introduction

The discrete logarithm problem is the
fundamental mathematical problem and in an
applied sense it is the basis of the public key
cryptography. The object of the discrete logarithm
problem was proposed for determination of a public
key cryptography in the Diffie-Hellman work. This
subsequently became applicable as a basis of a better
part of cryptography protocols and also as a
fundamental aspect for the common electronic
digital signature algorithm [1].

The basis of such systems is a computational
complexity of some revert functions. In this case the
discrete logarithm problem is a revert function to an
exponential one. This asymmetric can be compared
to the asymmetric of computational complexity of
multiplication and factorization that is also used in
the information security systems and cryptography.
Finding the result of an exponential function is quite
simple but counting the result of the discrete
logarithm problem can be compared to the
complexity of a factorization algorithm.

Now there is another one problem in an applied
sense which means that the document can be signed
by two or even more people who use their own
electronic digital signatures. In this case there should
be noted the possibility of rival opinions of all the
participants. It means that we should develop some
exactly new protocols of electronic digital signature
and authentication systems to prevent the intruding.

We have a base e when counting simple
logarithm that let us count it quite easy with the
arbitrary accuracy. In the situation of a discrete
logarithm problem there is no any base to count it as
simple as in the case of logarithms in the fields of
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real numbers. There are a stack of methods that
could be used to find a solution of a discrete
logarithm problem but all of them are described with
an exponential or a subexponential complexity.
There is a point of view that the general and
effective algorithm is still unknown [2].

Algorithms for the discrete

problem solving

logarithm

The discrete logarithm problem can be
considered in the fields F;, in multiplicative groups

of residue classes (Z/mz)*, in groups of points of

elliptic curves [4] and in general in arbitrary groups
[7]. Despite that fact that there is some isomorphism
between fields and multiplicative groups of residues
classes, the fields theory is wider than the theory of
multiplicative groups of residues classes. In this
work we analyze the algorithm that was described in
[2, 3]. The task is to find the value of x, that can be
described by the following equation

a=t"(mod q) (1)

where a, t and q - are the inputted values. These

values can be presented as numbers and also as
polynomials. The second case makes the theory
much more complicated. The discrete logarithm can
also be described as an index x=ind.a. The fact of

the existence of the algorithm for calculating a
discrete logarithm remains an open question [2], it is
not proved whether this problem has a solution or
the general algorithm does not exist. The
computational complexity of finding a discrete
logarithm is also an open question.
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Firstly, it should be noted that all the values a,
t and g can be presented by any of a real number.

We have to prove that the algorithm for all of the
values exists and this algorithm lets us check
whether the equation (1) has a solution. If the
algorithm exists the solution must be found in a
finite count of iterations. More over, the complexity
of the algorithm will be described in this work and
also the fact that it could not be simplified will be
proved. The aim of this article is to provide a
complex analysis of all the current algorithms and
their computation complexities. Also there will be
described some ways of algorithms improving.

In this part of work we will thoroughly analyze
the algorithm from [2, 3]. The author noted that q is

a prime number and t is a primary root is just to
simplify the algorithm. The last notice is not correct
at all and the notice about primary root just make the
algorithm easier to complete. The requirement of g

to be a prime number is not necessary even when
talking about applied aspects of the discrete
logarithm theory. If we follow the idea of the
Diffie-Hellman protocol, which is the base of all
other key exchange protocols in cryptography and
information security systems, then it is not specified
what conditions numerical values must satisfy. It
should be noted that if g is not a prime number,
there are some cases when t can be described as a
relatively prime number to q or vice versa. The last
case makes the task much more difficult.

In the following works we will analyze the case
when q and t are real numbers. At this work we
analyzing the following case: suppose, that q -isa

prime number and t -is a primary root. Let it be
proved that if q—1 is a “smooth” (for multipliers)
number, the algorithm does not let to calculate the
discrete logarithm more easily than if g—1 is not a
«smoothy (for multipliers) number.
The algorithm from [2, 3] as it noted was
developed for cases when all values of p are not
extremely big numbers. They are the multipliers of
k-1

(q-1), where (q—-1)=]]p; . We will give the
i=0

full analyzing of this algorithm in this work.

We propose the definition of “smooth” numbers
for such wvalues of q in the sense of the
factorization. So, ¢ is a “smooth” number if all of
the multipliers of (q—1) could be approximated

linearly. Due to the logarithmic law of the

distribution of primes m(x) - X It means that
In(x)

multipliers cannot be represented in a linear form.

The count of such numbers is very small, more over
it will take an exponential computational complexity
to find them.

So, using the theory of discrete logarithms can
be complicated due to finding “smooth” numbers. If
we will not require q to be a prime number, we will

also use real numbers. They can be found more
quickly but in the case of real numbers there are no
guarantees that the algorithm works, because it
could be so that the number does not have a primary
root.
So, now we will describe the case when
k-1
(q-1D= H p; - are not big multipliers which could
i=0
be represented in a linear form and q - is a prime
number. As it noted, the first requirement is a base
of the algorithm. There can be some doubts due to
the fact that a value size is not connected to the
algorithmic complexity. To prove it we should
analyze the steps of the algorithm.
The first step of the algorithm from [2,3] is
counting all of the roots of the p degree for each of

p due to the following formula

i(9-1)

r,. =t ? where j=0,p-1.

p. |

It was proposed to use the method of re-calculating
square values. It should be noted that there can be
loosing of some intermediate values due to this
method.

If we consider numbers that are usually used in
cryptography, then the value of q consists of more

than 200-250 numerical characters. So, the table
that is created on condition of small values of

p will not contain numbers of much smaller
dimensions. It raises the question of the
requirements for storage and further processing of
the data obtained in the table. Also there is a
disadvantage due to the fact that the table can not be
used twice or more if we change the value of q .
Otherwise if g and t are fixed, we can use table
any times without re-counting, but this case is rarely
used in applied aspects.
Next steps need the Chinese theorem of the
remnants. We give the formulation of the theorem.
Suppose that pg.....px_; - are the positive
k-1
pairwise relatively prime modules and M =H P; -
i=0
Let also be given k corresponding deductions ry, ;-
Then the system of k equations and inequality

x=x.(mod p.), 0<x<M has the only solution.
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Moreover, this solution is exactly the smallest
nonnegative residue modulo M of a number

k-1 M
D> XV;M;, where M;=—, and v; - inverse
i=0 Pi

elements which determine from the relations

v;M; =1(mod p;) [4].
In this case, modules are the prime multipliers
of (g—1), so the deductions are values of r
j:0! p_l ) p:(ﬂ
Following the theorem to find the solution of
the primary task (1) it is suffice to

findx(mod p’®) for each p|(q—1). Some
primary p which divide (q—1) and y =y, >0 must

p.j!

be fixed. Then the algorithm of finding x(mod p")
must be described. We analyze the common case
where at least the only y,>1. Suppose that

x(mod p*) can be counted as

X=Xg + X P+...+ X, pTH(mod p¥), (2
where 0<x; < p.

Firstly, x, value must be determined. To do this
we should calculate the value a@™2/P e(Z/qZ)X ,
which is the pth root of 1, since a* =1(mod q).

that
Thus,

From equality a=t*(modq) follows

@-D/p _sx(@-D/p _t*@/p _
a =t =t =T

comparing the value al™ ' to {r,;}, where
0< j<p we can suppose that x, is equals to the
value of j atwhich a®@™'P =r ., [23].
To find x; we should change a to a; :% :
t

Then a, has a discrete logarithm such as

X=X =X P+..+X,1p" (mod p”). Since a, is
a pth power we find that a{™®’P =1(mod q) and

(Xx=%)(9-1) % (9-1)
2 2
af"l)’ Pt p =t P

r Thus,

PX
2

comparing the value a{®™"’"" with {r, ;} we can

suppose that x, is equals to the value of j at which

2
alanie =r,; [23]. The next values must be

counted due to the same algorithm.

The full analysis of the given algorithm
allows to reveal some disadvantages. First of them is
supposing that the value of t must be a primary root
just to simplify computations. It is true in some way.

It should be called not a method of simplifying but

244

the main requirement of the algorithm to be correct
at calculations. In other cases the algorithm will not
solve the problem with a great probability. An
explanation for this is in the analysis of the above
step of the algorithm and in the concept of the cycle
length.

In the case when t
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for their numerical values, but also for indicators of
degreey. The character of the indicators values is
not defined and can vary from 1 to several hundreds.
The dimension of the numbers can be compared to
102%° such values are used in cryptography.

The next case to be considered is when all of
v, =1, then the algorithm can be improved and it

will have fewer steps than in the cases of the degree
v, >1. In this case we can reduce the number of

computations by avoiding the algorithm step that
uses an expression (2).

Here is an algorithm that is based on the
iterative process.

Suppose that g is a prime number and t is a
primary root. The iterative process has the following
structure

Xnsq =t (mod ) 3)

Suppose that X, =1. We obtain a set
{zo =1,z; =t(mod q),...,z,_; =1} as the result of

the process due to the small Fermat theorem. If it
noted that t - is a primary root, the length of a cycle
l=q.

The next step is a search that is similar to the
search from the algorithm from [2, 3]. We will
compare the value of a to the values of the set
elements and also suppose that x; is defined by the

index of a concrete element z, . The last step also

uses the Chinese theorem on the remnants.

Thus, the general case method was given. It
solves the problem when at least one of the
indicators of degree y,>1. Also there was given

its simplification, provided that the degrees of power
are equal to 1, as well as the method that uses the
iterative process.

The algorithm from
following steps :

[2, 3] consists of the

i(g-1)

=t P

1) Counting the values of the table ry ;

k
where j=0,p-1, q-1=[]p, ;
i=0
2) Counting
ai(q—l)/"‘*1 — t OaXap+) @D/ p _px(aD)/p _

k
) q_]':Hpi )
i=0

3) Using the Chinese theorem on the remnants;
The iterative algorithm has some advantages
compared to the algorithm from [2, 3], but there are
also some disadvantages in means of the realization.
In practical using we have to store and to process a

P-X

i=0,y-1;

large array that defines the resulting set. More over
there is a problem of effective search.

Other algorithm of discrete logarithm problem
solving was described in the work [6]. There is also
a cases when the discrete logarithm task is trivial.
This case described in [6]. It is a situation in which
we have to count the value of the discrete logarithm
in the additive group G=Z/nZ with the primary
root g=1; in this case there is no such big

computational complexities required.

Although the algorithms for calculating the
discrete logarithm can be compared to the
factorization algorithms by complexities, one can
confidently say that the computational complexity of
the discrete logarithm problem solving is more
complicated because its steps predict the
decomposition of the number into simple factors in
themselves. Sometimes factorization helps to
achieve so-called smaller cases, for which
calculations will generally be in order of less
complexity, but for some methods, even those that
work with "smooth” numbers, the work with a
subgroup can be the same complex in terms of
computational complexity as well as work with a
complete group [6].

Most of the algorithms for solving the problem
of discrete logarithm has one general problem,
which is associated with a huge load of the machine
memory, which makes the problem of theirs
automation. Therefore, when developing new
algorithms or improving existing ones it is necessary
to take into account the fact that the data that is
required during the calculations must be stored and
processed. It requires a large amount of memory and
the definition of the optimal types of data for storage
and further processing, or, perhaps, the most optimal
is to recalculate data as needed. This issue needs to
be solved by comparing machine costs for storage
and computing. These problems are also very
important because all the methods are only the
mathematical theory at this stage and they should be
confirmed by practical results.

Conclusion

As it was noted earlier, the problem of
calculating a discrete logarithm is not only purely
mathematical, but is applied in nature. The variety of
problems and issues that arise in the process of
studying the theory of discrete logarithms is given in
[7]. In addition to the applied aspects that will be
discussed in more detail below, [7] there explains
the theoretical possibilities of using the theory of
discrete logarithms in hash constructions as well as
in search encryption systems. These questions
constitute the newly discovered problems of
mathematics and cryptography. A separate topic for
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analysis is the calculation of a discrete logarithm on
elliptic curves. The complexity of such algorithms is
theoretically evaluated as lower than those
considered in this paper.

The widest use of the discrete logarithm theory
is related to information security systems. It also can
be used in authentication systems. Electronic digital
signature systems are being built on this theory and
also they takes into account the computational
complexity of the discrete logarithm problem.

As it was noted earlier, the most interest and
complicated at the same time case is when there are
some electronic digital signatures in the document. It
iS a common case in economic obligations, where
each of the participants has its own interests. The
improvement of a key exchange protocols must be
considered in such a case due to the fact that
someone may want to change the original document
context. This situation will be analyzed and
described in details in future work.

Most of the algorithms for electronic digital
signature and key exchange protocols have similar
foundations. The basis of keys exchange protocols is
the Diffie-Hellman protocol. The stability of this
algorithm is provided by calculating the value,
which in essence is a discrete logarithm. This value
is a g2 (mod p), where g and p - are jointly
defined numbers that are known for both the
participants, and also b and a - are their secret
keys that must be kept in a secret.

Electronic digital signature systems are also
based on the same principles. That is, if the problem

of the discrete logarithm was solved, and the exact
and universal algorithm was automated, most
cryptographic systems would be forced to change
the basic algorithms because of their instability.
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AHAJII3 TA PO3BUTOK ICHYIOUUX AJI'OPUTMIB PO3B’SAI3AHHS ITPOBJIEMHU
JAUCKPETHOI'O JIOTAPUDMA

Boctpos I'. M., Be3pykoga 10. C.

Ooecvruil HayionanvHull nonimexuiunul ynisepcumem, Ooeca, Ykpaina

Anomauyin: YV Oauiti pobomi onucama NOCMAHOGKA MA CYMHICMb 30044l  OUCKPEMHO20
JI02apUpMy8anHs, Wo € HA OAHOMY emani GAdNCIUBOI MAMEMAMUYHOIO HPOOIEMOI0, A 8 NPUKIAOHOMY
acnexmi — 0CHO60I0 Kpunmoepaii 3 eiokpumum Kkuovem. Ll 3a0aua € 6a3010 0l CMBOPEHHSI CeanCo8020
xmoua y pooomi [Jigpgi-Xenrmana ma 6acamvox Kpunmoepagiunux npomoxorax. Y oauiti pobomi
NPUKIAOHA CYMHICMb 3a0ayi OUCKPEMHO20 N02apPUPMYEAHHS AHANIZYEMBCA 3 MOYKU 30pY CHGOPEHHS
aneopummie eieKmpoHHO20 YUPPoeo2o NiONUCy, a 30Kpema ONUCYEMbCA NPoOIeMd CMEOPEHHs 080X |
Oinbule eleKMpPOHHUX YUPPOSUX NIONUCI6 HA OOHOMY OOKYMEHMI, W0 NOompedye He Juuie CMmeopeHHs
egpexmugHUx aneopummis nionucy, a U 3abe3neyents HadiiHOCMi NPOMOKONI6 0OMIHY Kmouamu. ¥ pobomi
ONUCYEMBCA  KAACUYHA —~ MAMEMAMUYHA NOCMAHOBKA 304yl  OUCKPEMHO20  Jl02apudmyeaHHs ma
npoBooUMbCsL OemaibHull aHANi3 ICHYIOH020 Memooa eupiuents yiei npooremu. Y x00i auanisy
NO3HAUAIOMbCSL HEeOONIKU 3ANPONOHOBAHO20 ANCOPUMMY MA OOIPYHMYBAHH GUNAOKIE, Npu SAKUX yell
aneopumm He Modice Gupiwumu npoodnemy OUCKpemnoz2o Jjo2apu@myeanns. s Oitbws OemanbHo2o
00CHI0JCEHHST NPOBOOUMBCSL AHATI3 A2OPUMMY NpU PI3HUX GXIOHUX 3HaueHHsx. Ha ocHosi yvozo 6y10
006€0€eH0, W0 Npu OeSKUX 3HAYEHHAX ANICOPUMM He MAE 3MO2U GUPIUUMU NPOOIeMy OUCKDEMHO20
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noeapugmysanns. Lleii haxm dae 3mocy cmasumu nio CyMHi@ came iCHYBAHHS ANICOPUMMY GUDTULEHHS 3a0aUl
OUCKPEMHO020 NI02apupMmysants 015 3a2aivbhoco eunaoka. binbur mozo 6yno 0oeedeno, wo OcHOGHI emanu
aneopummy cami no codi ckiadarmv 3a0aui eKCnoHeHYiluHol ckiadnocmi. Y pobomi O6ye 3anpononosanuii
aneopumm, wo OYOyemvbCs HA OCHO8I NesHo2o imepayitnozo npoyecy. Illpu 3a3nHauenux ymosax, wjo
HAK1a0aromvcs Ha 8XiOHI OaHHI, yell aneopumm MAe MeHule KPOKie ma CNpoOujeHHi 0OYUCTIeHHA Y NOPIGHAHHI
3 icuytouum aneopummom. OKpim Yybo2o, HeOOXIOHO 3a3HAYUMU, WO 3ANPONOHOBAHUL ANCOPUMM MAE NEGHI
HeOOMIKU, WO RNONA2AI0Mb Y CKIAOHOWAX KOMN tomepHoi peanizayii. Ilpu npakmuunomy UKOpPUCHMAHHI
maxko2o Memody HeoOXiOHO 30epicamu ma 00poONAMU BeNUKUL MACUE OAHUX, OKDIM Yb020 HOCHMAE
npobrema cmeopeHis ehekmuenoc0 Memooy NOUYKy KOHKPEMmHO20 Yucia y makux macueax oanux. Oxpiu
moeo, y pobomi HAGeOeHi CyYyacHi npobnemu, y SAKUX 3ANPONOHOBAHO GUKOPUCTMOBYBAMU MemOoo
OUCKPEMHO20 T02APUDPMYEAHHSL.

Knirouosi cnosa: ouckpemnuii 1oeapugm, Kinyese noie, nepeicHuil KoOpinb, Kpunmozpagis, eioKpumutl
KH0Y, eleKMmpOHHUL Yughposutl nionuc.

AHAJIN3 U PABBUTHUE CYHECTBYIOIIUX AJITOPUTMOB PEIHIEHUSA ITPOBJIEMbI
JUCKPETHOI'O JIOTAPUOMUPUDPMA

Boctpos I'. H., be3pykosa lO. C.
Ooecckuil HaYUOHATbHBIL NOIUMEXHUYECKUL YHUSEpCUmem

Aunomayua. B Oanuoili pabome onucana NOCMAHOBKA U CYWHOCMb 3A0a4U  OUCKDEMHOZ0
J102apUGMUposanus, Komopas Ha OAHHOM dmane AGNAeMCcs 6AXNCHOU MamemMamuyeckou npoonemoll, a 6
NPUKIAOHOM acCneKme — OCHOBOU KpUnmozpaguu ¢ OmkpulmslM Kuo4oM. B xode ananuza cywecmeyroujux
aneopummog Obliu GbIACHEHbl UX HEMOYHOCMU U NpUBeOeHvl CNopHvie MomeHmvl. Kpome moeo 6bvin
npeonodcen coOCmeeHHvll  aneopumm. [na 6Oonee O0emanbHO20 AHAIU3A NPUBEOEHbI HEeDOCHAMKU
Mamemamuieckux mooeneil u peanusayuii OGHHbIX AI20PUMMOB.
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