eONPUIR

Regression Models of the Nuclear Power Unit VVER-1000 Using Data Mining Techniques

Показать сокращенную информацию

dc.contributor.author Maksimov, Maksim
dc.contributor.author Machado, José
dc.contributor.author Portela, Filipe
dc.contributor.author Foshch, Tymur
dc.date.accessioned 2019-12-26T13:29:34Z
dc.date.available 2019-12-26T13:29:34Z
dc.date.issued 2016-10-04
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/10066
dc.description.abstract Due to plenty of changes in many interrelated processes at nuclear power plants there is the need to show which values of some parameters of the nuclear power plant with VVER-1000 are better. In this task data mining techniques can be introduced. In order to obtain regression models of nuclear power plant with VVER-1000 algorithms such as the Linear Regression, REPTree, and M5P were selected and the datasets were obtained by simulating two control programs in Simulink software. The study focused on such targets as the average temperature of the coolant in the first circuit and the output power of the power generator. This study demonstrates the good results of the correlation coefficients and the root relative squared error metrics in case of the improved compromise-combined control program in comparison with the control program with the constant average temperature of the coolant in the reactor core. In terms of the results the root relative squared error metric is less than 2.8% and the correlation coefficients had values higher than 99,95%. The use of these models can contribute to improving the understanding of the internal processes because using the best regression data mining models allows to see advantages of the improved compromise-combined control program. en
dc.language.iso en en
dc.subject VVER-1000 en
dc.subject Data Mining en
dc.subject Regression Models en
dc.subject Nuclear Power Plant en
dc.title Regression Models of the Nuclear Power Unit VVER-1000 Using Data Mining Techniques en
dc.type Article in Scopus en
opu.citation.journal Procedia Computer Science en
opu.citation.firstpage 253 en
opu.citation.lastpage 262 en
opu.citation.issue 100 en
opu.staff.id maksymov.maksym@opu.ua en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию