eONPUIR

Deep learning approach to diabetic retinopathy detection

Показать сокращенную информацию

dc.contributor.author Tymchenko, Borys
dc.contributor.author Тимченко, Борис Ігорович
dc.contributor.author Marchenko, Philip
dc.contributor.author Марченко, Фiлiп Олександрович
dc.contributor.author Spodarets, Dmitrо
dc.contributor.author Сподарець, Дмитро Володимирович
dc.date.accessioned 2025-02-06T09:20:47Z
dc.date.available 2025-02-06T09:20:47Z
dc.date.issued 2020
dc.identifier.citation Tymchenko, B., Marchenko, Ph., Spodarets, D. (2020). Deep learning approach to diabetic retinopathy detection. International Conference on Pattern Recognition Applications and Methods, Volume 1, P. 501-509. en
dc.identifier.issn 21844313
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/14894
dc.description.abstract Diabetic retinopathy is one of the most threatening complications of diabetes that leads to permanent blindness if left untreated. One of the essential challenges is early detection, which is very important for treatment success. Unfortunately, the exact identification of the diabetic retinopathy stage is notoriously tricky and requires expert human interpretation of fundus images. Simplification of the detection step is crucial and can help millions of people. Convolutional neural networks (CNN) have been successfully applied in many adjacent subjects, and for diagnosis of diabetic retinopathy itself. However, the high cost of big labeled datasets, as well as inconsistency between different doctors, impede the performance of these methods. In this paper, we propose an automatic deep-learning-based method for stage detection of diabetic retinopathy by single photography of the human fundus. Additionally, we propose the multistage approach to transfer learning, which makes use of similar datasets with different labeling. The presented method can be used as a screening method for early detection of diabetic retinopathy with sensitivity and specificity of 0.99 and is ranked 54 of 2943 competing methods (quadratic weighted kappa score of 0.925466) on APTOS 2019 Blindness Detection Dataset (13000 images). en
dc.language.iso en en
dc.publisher Science and Technology Publications en
dc.subject deep learning en
dc.subject diabetic retinopathy en
dc.subject deep convolutional neural network en
dc.subject multi-target learning en
dc.subject ordinal regression en
dc.subject classification en
dc.subject SHAP en
dc.subject Kaggle en
dc.subject APTOS en
dc.title Deep learning approach to diabetic retinopathy detection en
dc.type Article in Scopus en
opu.citation.journal International Conference on Pattern Recognition Applications and Methods en
opu.citation.volume 1 en
opu.citation.firstpage 501 en
opu.citation.lastpage 509 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию