eONPUIR

Mathematical models of pseudorandom processes behavior for nonlinear dynamical systems

Показать сокращенную информацию

dc.contributor.author Vostrov, George
dc.contributor.author Khrinenko, Andrii
dc.date.accessioned 2025-04-05T10:19:58Z
dc.date.available 2025-04-05T10:19:58Z
dc.date.issued 2021
dc.identifier.citation Vostrov G. Mathematical models of pseudorandom processes behavior for nonlinear dynamical systems / G. Vostrov, A. Khrinenko // CEUR Workshop Proceedings, 2021. - 308-320. en
dc.identifier.uri http://dspace.opu.ua/jspui/handle/123456789/15061
dc.description.abstract This paper considers the processes in maps, which are examples of nonlinear dynamical systems. Analysing dynamical systems, it is necessary to take into account and analyze properties of iterative functions that determine the length of nonrepetitive iterative process. It is shown that not only properties of functions, but also properties of numbers from the considered functions domain influence the nonlinear maps behavior. Also this work consider nonlinear maps as a background in the analysis of financial data and complex dynamical systems, such as stock exchange and economics. en
dc.language.iso en_US en
dc.subject Chaos en
dc.subject randomness en
dc.subject nonlinear maps en
dc.subject financial analysis en
dc.title Mathematical models of pseudorandom processes behavior for nonlinear dynamical systems en
dc.type Article en
opu.citation.firstpage 308 en
opu.citation.lastpage 320 en


Файлы, содержащиеся в элементе

Этот элемент содержится в следующих коллекциях

Показать сокращенную информацию