Показать сокращенную информацию
dc.contributor.author | Vostrov, George![]() |
|
dc.contributor.author | Khrinenko, Andrii![]() |
|
dc.date.accessioned | 2025-04-05T10:19:58Z | |
dc.date.available | 2025-04-05T10:19:58Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Vostrov G. Mathematical models of pseudorandom processes behavior for nonlinear dynamical systems / G. Vostrov, A. Khrinenko // CEUR Workshop Proceedings, 2021. - 308-320. | en |
dc.identifier.uri | http://dspace.opu.ua/jspui/handle/123456789/15061 | |
dc.description.abstract | This paper considers the processes in maps, which are examples of nonlinear dynamical systems. Analysing dynamical systems, it is necessary to take into account and analyze properties of iterative functions that determine the length of nonrepetitive iterative process. It is shown that not only properties of functions, but also properties of numbers from the considered functions domain influence the nonlinear maps behavior. Also this work consider nonlinear maps as a background in the analysis of financial data and complex dynamical systems, such as stock exchange and economics. | en |
dc.language.iso | en_US | en |
dc.subject | Chaos | en |
dc.subject | randomness | en |
dc.subject | nonlinear maps | en |
dc.subject | financial analysis | en |
dc.title | Mathematical models of pseudorandom processes behavior for nonlinear dynamical systems | en |
dc.type | Article | en |
opu.citation.firstpage | 308 | en |
opu.citation.lastpage | 320 | en |