Запропоновано метод видалення розмірності математичної моделі, що дає кількість змінних менше, ніж пропонується ʌ-теоремою. Це спростило вибір початкових рішень, використовуваних в
груповому методі побудови апроксимаційних залежностей для відображення рішення нелінійних рівнянь, при відсутності його реалізації в термінах стандартних функцій. Працездатність методу проілюстрована на прикладі дослідження руху маятника, що є в теорії автоматичного управління аналогом інерційної ланки другого порядку
Предложен метод обезразмеривания математической модели, дающий количество переменных меньше, чем предписывается ʌ-теоремой. Это упростило выбор начальных решений, используемых в групповом методе построения аппроксимационных зависимостей для отображения решения нелинейных уравнений, приотсутствии его реализации в терминах стандартных функций. Работоспособность метода проиллюстрирована на примере исследования движения маятника, являющегося в теории автоматического управления аналогом инерционного звена второго порядка
A method of deletion of dimensions for a mathematical model which gives the number of variables less than that prescribed by the π-theorem was proposed. In a number of cases, it is possible to exclude from consideration all similarity criteria or, in other words, achieve self-similarity in them. In the framework of deletion of dimensions, this is expressed in a transition from criteria to similarity numbers. Thus, information is reduced without its loss.
The limit reduction of the number of variables in the mathematical model makes it possible to use analytical approximation dependences as approximate solutions. Such dependences are obtained from the initial solutions by using the coefficients of stretch, which corresponds to the group methods for solving equations. It was proposed to use solutions of the linearized forms of the original nonlinear equations as initial solutions. Such approach makes it possible to take into account physical character of the change in the studied quantities in the approximation dependences when solution of nonlinear equations cannot be realized using standard functions.
Efficiency of the method was illustrated by the example of study of the pendulum motion, which is a counterpart of inertial link of the second order in the theory of automatic control. Solutions were obtained for the cases of presence and absence of environmental resistance. The last variant is interesting by the feasibility of comparing the proposed and available analytical solutions in terms of elliptic integrals.