Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/13029
Название: Online Monitoring of Surface Quality for Diagnostic Features in 3D Printing
Авторы: Lishchenko, Natalia
Ліщенко, Наталя Володимирівна
Pitel, Jan
Пітель, Ян
Larshin, Vasily
Ларшин, Василь Петрович
Ключевые слова: signal processing
frequency analysis
monitoring system
vision-based method
laser profiler
non-contact method
surface roughness
quality assessment
Дата публикации: 2022
Издательство: MDPI
Библиографическое описание: Lishchenko, N.; Pitel’, J.; Larshin, V. Online Monitoring of Surface Quality for Diagnostic Features in 3D Printing. Machines 2022, 10, 541. https://doi.org/ 10.3390/machines10070541
Краткий осмотр (реферат): Investigation into non-destructive testing and evaluation of 3D printing quality is relevant due to the lack of reliable methods for non-destructive testing of 3D printing defects, including testing of the surface quality of 3D printed parts. The article shows how it is possible to increase the efficiency of online monitoring of the quality of the 3D printing technological process through the use of an optical contactless high-performance measuring instrument. A comparative study of contact (R130 roughness tester) and non-contact (LJ-8020 laser profiler) methods for determining the height of irregularities on the surface of a steel reference specimen was performed. It was found that, in the range of operation of the contact method (Ra 0.03–6.3 m and Rz 0.2–18.5 m), the errors of the contactless method in determining the standard surface roughness indicators Ra and Rz were 23.7% and 1.6%, respectively. Similar comparative studies of contact and non-contact methods were performed with three defect-free samples made of plastic polylactic acid (PLA), with surface irregularities within the specified range of operation of the contact method. The corresponding errors increased and amounted to 65.96% and 76.32%. Finally, investigations were carried out using only the non-contact method for samples with different types of 3D printing defects. It was found that the following power spectral density (PSD) estimates can be used as diagnostic features for determining 3D printing defects: Variance and Median. These generalized estimates are the most sensitive to 3D printing defects and can be used as diagnostic features in online monitoring of object surface quality in 3D printing.
URI (Унифицированный идентификатор ресурса): https://doi.org/ 10.3390/machines10070541
http://dspace.opu.ua/jspui/handle/123456789/13029
https://www.researchgate.net/publication/361763750_Online_Monitoring_of_Surface_Quality_for_Diagnostic_Features_in_3D_Printing
ISSN: 2075-1702
Располагается в коллекциях:Статті каф. ЦТІ

Файлы этого ресурса:
Файл Описание РазмерФормат 
machines-10-00541.pdf4.32 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.