Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15161
Полная запись метаданных
Поле DCЗначениеЯзык
dc.contributor.authorHuan, Wang-
dc.contributor.authorShcherbakova, Galyna-
dc.contributor.authorSachenko, Anatoliy-
dc.contributor.authorYan, Lingyu-
dc.contributor.authorVolkova, Natalia-
dc.contributor.authorRusyn, Bohdan-
dc.contributor.authorMolga, Agnieszka-
dc.date.accessioned2025-05-12T09:42:46Z-
dc.date.available2025-05-12T09:42:46Z-
dc.date.issued2023-
dc.identifier.citationHuan, W., Shcherbakova, G., Sachenko, A., Yan, L., Volkova, N., Rusyn, B., Molga, A. Haar wavelet-based classification method for visual information processing systems. Appl. Sci. 2023, 13, 5515.en
dc.identifier.issn20763417-
dc.identifier.urihttp://dspace.opu.ua/jspui/handle/123456789/15161-
dc.description.abstractNowadays, the systems for visual information processing are significantly extending their application field. Moreover, an unsolved problem for such systems is that the classification procedure has often-conflicting requirements for performance and classification reliability. Therefore, the goal of the article is to develop the wavelet method for classifying the systems for visual information processing by evaluating the performance and informativeness of the adopted classification solutions. This method of classification uses the Haar wavelet functions with training and calculates the ranges of changes in the coefficients of the separating surfaces. The authors proposed to select the ranges of changes in these coefficients by employing the Shannon entropy formula for measuring the information content. A case study proved that such a method will significantly increase the speed of detecting the intervals of coefficient values. In addition, this enables us to justify the choice of the width of the ranges for the change of coefficients, solving the contradiction between the performance and reliability of the classifier.en
dc.language.isoenen
dc.publisherMDPIen
dc.subjectclassification methoden
dc.subjectwavelet transformen
dc.subjectHaar wavelet functionen
dc.subjectvisual information processing systemsen
dc.subjectShannon entropy formulaen
dc.titleHaar wavelet-based classification method for visual information processing systemsen
dc.typeArticle in Scopusen
opu.citation.journalApplied Sciences (Switzerland)en
opu.citation.volume13en
Располагается в коллекциях:2023

Файлы этого ресурса:
Файл Описание РазмерФормат 
applsci-13-05515-v3.pdf1.3 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.