Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/14894
Название: Deep learning approach to diabetic retinopathy detection
Авторы: Tymchenko, Borys
Тимченко, Борис Ігорович
Marchenko, Philip
Марченко, Фiлiп Олександрович
Spodarets, Dmitrо
Сподарець, Дмитро Володимирович
Ключевые слова: deep learning
diabetic retinopathy
deep convolutional neural network
multi-target learning
ordinal regression
classification
SHAP
Kaggle
APTOS
Дата публикации: 2020
Издательство: Science and Technology Publications
Библиографическое описание: Tymchenko, B., Marchenko, Ph., Spodarets, D. (2020). Deep learning approach to diabetic retinopathy detection. International Conference on Pattern Recognition Applications and Methods, Volume 1, P. 501-509.
Краткий осмотр (реферат): Diabetic retinopathy is one of the most threatening complications of diabetes that leads to permanent blindness if left untreated. One of the essential challenges is early detection, which is very important for treatment success. Unfortunately, the exact identification of the diabetic retinopathy stage is notoriously tricky and requires expert human interpretation of fundus images. Simplification of the detection step is crucial and can help millions of people. Convolutional neural networks (CNN) have been successfully applied in many adjacent subjects, and for diagnosis of diabetic retinopathy itself. However, the high cost of big labeled datasets, as well as inconsistency between different doctors, impede the performance of these methods. In this paper, we propose an automatic deep-learning-based method for stage detection of diabetic retinopathy by single photography of the human fundus. Additionally, we propose the multistage approach to transfer learning, which makes use of similar datasets with different labeling. The presented method can be used as a screening method for early detection of diabetic retinopathy with sensitivity and specificity of 0.99 and is ranked 54 of 2943 competing methods (quadratic weighted kappa score of 0.925466) on APTOS 2019 Blindness Detection Dataset (13000 images).
URI (Унифицированный идентификатор ресурса): http://dspace.opu.ua/jspui/handle/123456789/14894
ISSN: 21844313
Располагается в коллекциях:2020

Файлы этого ресурса:
Файл Описание РазмерФормат 
2003.02261v1.pdf1.54 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.