Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/14894
Название: | Deep learning approach to diabetic retinopathy detection |
Авторы: | Tymchenko, Borys Тимченко, Борис Ігорович Marchenko, Philip Марченко, Фiлiп Олександрович Spodarets, Dmitrо Сподарець, Дмитро Володимирович |
Ключевые слова: | deep learning diabetic retinopathy deep convolutional neural network multi-target learning ordinal regression classification SHAP Kaggle APTOS |
Дата публикации: | 2020 |
Издательство: | Science and Technology Publications |
Библиографическое описание: | Tymchenko, B., Marchenko, Ph., Spodarets, D. (2020). Deep learning approach to diabetic retinopathy detection. International Conference on Pattern Recognition Applications and Methods, Volume 1, P. 501-509. |
Краткий осмотр (реферат): | Diabetic retinopathy is one of the most threatening complications of diabetes that leads to permanent blindness if left untreated. One of the essential challenges is early detection, which is very important for treatment success. Unfortunately, the exact identification of the diabetic retinopathy stage is notoriously tricky and requires expert human interpretation of fundus images. Simplification of the detection step is crucial and can help millions of people. Convolutional neural networks (CNN) have been successfully applied in many adjacent subjects, and for diagnosis of diabetic retinopathy itself. However, the high cost of big labeled datasets, as well as inconsistency between different doctors, impede the performance of these methods. In this paper, we propose an automatic deep-learning-based method for stage detection of diabetic retinopathy by single photography of the human fundus. Additionally, we propose the multistage approach to transfer learning, which makes use of similar datasets with different labeling. The presented method can be used as a screening method for early detection of diabetic retinopathy with sensitivity and specificity of 0.99 and is ranked 54 of 2943 competing methods (quadratic weighted kappa score of 0.925466) on APTOS 2019 Blindness Detection Dataset (13000 images). |
URI (Унифицированный идентификатор ресурса): | http://dspace.opu.ua/jspui/handle/123456789/14894 |
ISSN: | 21844313 |
Располагается в коллекциях: | 2020 |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
2003.02261v1.pdf | 1.54 MB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.