Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс:
http://dspace.opu.ua/jspui/handle/123456789/5348
Название: | СИЛЬНО НЕЛИНЕЙНЫЕ ПОДСТАНОВКИ: МЕТОД СИНТЕЗА S-БЛОКОВ, ОБЛАДАЮЩИХ МАКСИМАЛЬНОЙ 4-НЕЛИНЕЙНОСТЬЮ |
Другие названия: | СИЛЬНО НЕЛІНІЙНІ ПІДСТАНОВКИ: МЕТОД СИНТЕЗУ S-БЛОКІВ, ЩО ВОЛОДІЮТЬ МАКСИМАЛЬНОЮ 4-НЕЛІНІЙНІСТЮ VERY NONLINEAR PERMUTATIONS: SYNTHESIS METHOD FOR S-BOXES WITH MAXIMAL 4-NONLINEARITY |
Авторы: | Соколов, Артем Викторович Красота, Наталия Игоревна Соколов, А. В. Красота, Н. І. Sokolov, A. V. Krasota, N. I. |
Ключевые слова: | S-блок нелинейность многозначная логика нелінійність багатозначна логіка S-блок S-box nonlinearity many-valued logic |
Дата публикации: | 2017 |
Библиографическое описание: | Соколов, А. В. Сильно нелинейные подстановки: метод синтеза S-блоков, обладающих максимальной 4-нелинейностью / А. В. Соколов, Н. И. Красота // Научные труды ОНАС им. А.С. Попова. - 2017. - № 2. - С. 145-154 |
Краткий осмотр (реферат): | Одним из наиболее важных компонентов современных блочных симметричных
криптоалгоритмов является S-блок. Так, качество криптопреобразования в целом во многом
базируется на свойствах применяемого в нем S-блока, а именно: лавинный эффект, корреляционный иммунитет и, в особенности, нелинейность. За время развития теории криптографии было предложено несколько способов определения нелинейности S-блоков, таких как алгебраическая степень нелинейности и расстояние нелинейности. Тем не менее, все они учитывают только описание S-блока с помощью математического аппарата булевых функций. Однако, криптоаналитик не стеснен в используемых описаниях шифра, в частности, с помощью функций многозначной логики.
В этом свете актуальным является исследование нелинейных свойств компонентных функций
многозначной логики S-блоков подстановки. В настоящей статье предложена методика оценки
4-нелинейности функций многозначной логики на основе преобразования Виленкина-Крестенсона,
отражающая степень равномерности спектра Виленкина-Крестенсона. Проведенные исследования позволили установить, что изученные современные конструкции S-блоков не обладают удовлетворительными свойствами с точки зрения 4-нелинейности. Данное обстоятельство продиктовало задачу построения нового метода синтеза 4-нелинейных S-блоков, которая нашла свое решение в данной статье. Одним із найбільш важливих компонентів сучасних блокових симетричних криптоалгоритмів є S-блок. Так, якість криптоперетворення у цілому багато в чому базується на властивостях застосовуваного в ньому S-блока, а саме: лавинний ефект, кореляційний імунітет, і особливо, нелінійність. За час розвитку теорії криптографії було запропоновано кілька способів визначення нелінійності S-блоків, таких як алгебраїчна степінь нелінійності і відстань нелінійності. Проте всі вони враховують тільки опис S-блока за допомогою математичного апарата булевих функцій. Однак, криптоаналітик не обмежений у використовуваних описах шифру, зокрема, за допомогою функцій багатозначної логіки. Таким чином, актуальним є дослідження нелінійних властивостей компонентних функцій багатозначної логіки S-блоків підстановки. У цій статті запропонована методика оцінки 4-нелінійності функцій багатозначної логіки на основі перетворення Віленкіна-Крестенсона, що відображає степінь рівномірності спектра Віленкіна-Крестенсона. Проведені дослідження дозволили встановити, що досліджені сучасні конструкції S-блоків не володіють задовільними властивостями з точки зору 4-нелінійності. Така обставина продиктувала завдання побудови нового методу синтезу 4-нелінійних S-блоків, яка знайшла своє рішення в даній статті. One of the most important components of modern block symmetric cryptographic algorithms is the S-box. Thus, the quality of cryptographic transform is in general largely dependent on the properties of used S-box, such as the avalanche effect, correlation immunity, and in particular, nonlinearity. During the development of the theory of cryptography, several methods for determining the nonlinearity of S-boxes have been proposed, such as the algebraic degree of nonlinearity and the distance of nonlinearity. Nevertheless, they all take into account only the description of the S-box using the mathematical apparatus of Boolean functions. But, the cryptanalyst is not constrained in the used cipher description methods, in particular with the application of functions of many-valued logic. In this respect, it is relevant to research the nonlinear properties of the component many-valued functions of S-boxes. In this paper, we propose a technique for estimating the 4-nonlinearity of many-valued logic functions based on the Vilenkin-Chrestensen transform, which considers the degree of uniformity of the Vilenkin-Chrestensen spectrum. The performed research made it possible to understand that many widely used modern constructions of S-boxes do not satisfy the high nonlinearity criterion from the point of view of 4-nonlinearity. This circumstance defined the task of constructing a new method for the synthesis of 4-nonlinear S-boxes, which found its solution in this paper |
URI (Унифицированный идентификатор ресурса): | https://ojs.onat.edu.ua/index.php/sbornik_onat/article/view/1027 http://dspace.opu.ua/jspui/handle/123456789/5348 |
ISSN: | 2518-7147 |
Располагается в коллекциях: | Статті каф. РТС |
Файлы этого ресурса:
Файл | Описание | Размер | Формат | |
---|---|---|---|---|
1027-2019-1-SM.pdf | СИЛЬНО НЕЛИНЕЙНЫЕ ПОДСТАНОВКИ: МЕТОД СИНТЕЗА S-БЛОКОВ, ОБЛАДАЮЩИХ МАКСИМАЛЬНОЙ 4-НЕЛИНЕЙНОСТЬЮ | 886.04 kB | Adobe PDF | Просмотреть/Открыть |
Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.