Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: http://dspace.opu.ua/jspui/handle/123456789/15161
Название: Haar wavelet-based classification method for visual information processing systems
Авторы: Huan, Wang
Shcherbakova, Galyna
Sachenko, Anatoliy
Yan, Lingyu
Volkova, Natalia
Rusyn, Bohdan
Molga, Agnieszka
Ключевые слова: classification method
wavelet transform
Haar wavelet function
visual information processing systems
Shannon entropy formula
Дата публикации: 2023
Издательство: MDPI
Библиографическое описание: Huan, W., Shcherbakova, G., Sachenko, A., Yan, L., Volkova, N., Rusyn, B., Molga, A. Haar wavelet-based classification method for visual information processing systems. Appl. Sci. 2023, 13, 5515.
Краткий осмотр (реферат): Nowadays, the systems for visual information processing are significantly extending their application field. Moreover, an unsolved problem for such systems is that the classification procedure has often-conflicting requirements for performance and classification reliability. Therefore, the goal of the article is to develop the wavelet method for classifying the systems for visual information processing by evaluating the performance and informativeness of the adopted classification solutions. This method of classification uses the Haar wavelet functions with training and calculates the ranges of changes in the coefficients of the separating surfaces. The authors proposed to select the ranges of changes in these coefficients by employing the Shannon entropy formula for measuring the information content. A case study proved that such a method will significantly increase the speed of detecting the intervals of coefficient values. In addition, this enables us to justify the choice of the width of the ranges for the change of coefficients, solving the contradiction between the performance and reliability of the classifier.
URI (Унифицированный идентификатор ресурса): http://dspace.opu.ua/jspui/handle/123456789/15161
ISSN: 20763417
Располагается в коллекциях:2023

Файлы этого ресурса:
Файл Описание РазмерФормат 
applsci-13-05515-v3.pdf1.3 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.